首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   492篇
  免费   24篇
电工技术   4篇
化学工业   83篇
金属工艺   6篇
机械仪表   1篇
建筑科学   21篇
矿业工程   2篇
能源动力   29篇
轻工业   57篇
水利工程   9篇
无线电   66篇
一般工业技术   89篇
冶金工业   81篇
原子能技术   2篇
自动化技术   66篇
  2024年   1篇
  2023年   1篇
  2022年   13篇
  2021年   12篇
  2020年   8篇
  2019年   10篇
  2018年   15篇
  2017年   9篇
  2016年   19篇
  2015年   11篇
  2014年   18篇
  2013年   29篇
  2012年   25篇
  2011年   44篇
  2010年   25篇
  2009年   29篇
  2008年   25篇
  2007年   28篇
  2006年   15篇
  2005年   9篇
  2004年   7篇
  2003年   10篇
  2002年   9篇
  2001年   11篇
  2000年   2篇
  1999年   10篇
  1998年   33篇
  1997年   15篇
  1996年   17篇
  1995年   8篇
  1994年   7篇
  1993年   6篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   8篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1976年   2篇
排序方式: 共有516条查询结果,搜索用时 15 毫秒
81.
82.
A mutant of D ‐fructose‐6‐phosphate aldolase (FSA) of Escherichia coli, FSA A129S, with improved catalytic efficiency towards dihydroxyacetone (DHA), the donor substrate in aldol addition reactions, was explored for synthetic applications. The kcat/KM value for DHA was 17‐fold higher with FSA A129S than that with FSA wild type (FSA wt). On the other hand, for hydroxyacetone as donor substrate FSA A129S was found to be 3.5‐fold less efficient than FSA wt. Furthermore, FSA A129S also accepted glycolaldehyde (GA) as donor substrate with 3.3‐fold lower affinity than FSA wt. This differential selectivity of both FSA wt and FSA A129S for GA makes them complementary biocatalysts allowing a control over donor and acceptor roles, which is particularly useful in carboligation multi‐step cascade synthesis of polyhydroxylated complex compounds. Production of the mutant protein was also improved for its convenient use in synthesis. Several carbohydrates and nitrocyclitols were efficiently prepared, demonstrating the versatile potential of FSA A129S as biocatalyst in organic synthesis.  相似文献   
83.
This paper presents, for the first time, a five-cell polymer electrolyte membrane fuel cell (PEMFC) short stack with electrodeposited hydrogen diffusion anodes. The anodes were manufactured by means of galvanostatic pulse electrodeposition and the cathodes by air-brushing. Nafion® 212 was employed as a solid polymer electrolyte membrane in all cases. The short stack, whose cells had an active geometric area of 14 cm2, was assembled and tested under different operating conditions. A peak power of about 11 W was obtained at 50 °C and atmospheric pressure using hydrogen and air feed, whereas a smaller value of 8.6 W was obtained from a five-cell short PEMFC stack with conventional hydrogen diffusion anodes under the same operating conditions. The better performance of the cells described in this paper has been assigned to the higher utilization of the platinum in the electrodeposited anodes compared to the conventional ones.  相似文献   
84.
A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two “off the shelf” units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the gases before the chiller inlet. The results show that no risk of cold end corrosion within the chiller heat exchanger exists. In addition, crystallization is not an issue during system operation. Accounting for the electricity and the cooling produced and disregarding the remaining thermal energy, the second strategy is preferred and yields an overall estimated efficiency of 71.7%.  相似文献   
85.
Optogenetics, the developing field of research that uses light‐switchable biochemical tools in a sophisticated technological approach to monitor or control neural function, is rapidly evolving with the discovery and development of novel microbial rhodopsins. Light‐absorbing membrane proteins, as tools for brain research, are promoting new applications within the discipline of optogenetics. Light‐gated rhodopsin ion channels with better intrinsic light sensitivity and improved resolution are needed to overcome some of the current limitations of existing molecules. The recent discovery of light‐gated inhibitory anion channels opens new opportunities for studying physiological neural processes and, at the same time, represent a powerful approach for elucidating the mechanisms of neurological and mental disorders that could benefit from this approach.  相似文献   
86.
Considering the enormous importance of protein turns as participants in various biological events, such as protein–protein interactions, great efforts have been made to develop their conformationally and proteolytically stable mimetics. Ferrocene-1,1′-diamine was previously shown to nucleate the stable turn structures in peptides prepared by conjugation with Ala (III) and Ala–Pro (VI). Here, we prepared the homochiral conjugates of ferrocene-1,1′-diamine with l-/d-Phe (32/35), l-/d-Val (33/36), and l-/d-Leu (34/37) to investigate (1) whether the organometallic template induces the turn structure upon conjugation with amino acids, and (2) whether the bulky or branched side chains of Phe, Val, and Leu affect hydrogen bonding. Detailed spectroscopic (IR, NMR, CD), X-ray, and DFT studies revealed the presence of two simultaneous 10-membered interstrand hydrogen bonds, i.e., two simultaneous β-turns in goal compounds. A preliminary biological evaluation of d-Leu conjugate 37 showed its modest potential to induce cell cycle arrest in the G0/G1 phase in the HeLa cell line but these results need further investigation.  相似文献   
87.
In this paper, we present the integration of an absorbing photonic crystal within a thin-film photovoltaic solar cell. Optical simulations performed on a complete solar cell revealed that patterning the hydrogenated amorphous silicon active layer as a 2D photonic crystal membrane enabled to increase its integrated absorption by 28 % between 300 and 720 nm, comparing to a similar but unpatterned stack. In order to fabricate such promising cells, we developed a high throughput process based on holographic lithography and reactive ion etching. The influences of the parameters taking part in those processes on the obtained patterns are discussed. Optical measurements performed on the resulting “photonized” solar cell structures underline the regularity of the 2D pattern and a significant absorption increase above 550 nm, similarly to what is observed on the simulated absorption spectra. Moreover, our patterned cells are found to be robust with regards to the angle of incidence of the light.  相似文献   
88.
In a global aging population, it is important to understand the factors affecting systemic aging and lifespan. Mitohormesis, an adaptive response caused by different insults affecting the mitochondrial network, triggers a response from the nuclear genome inducing several pathways that promote longevity and metabolic health. Understanding the role of mitochondrial function during the aging process could help biomarker identification and the development of novel strategies for healthy aging. Herein, we interfered the muscle expression of the Drosophila genes Marf and Opa1, two genes that encode for proteins promoting mitochondrial fusion, orthologues of human MFN2 and OPA1. Silencing of Marf and Opa1 in muscle increases lifespan, improves locomotor capacities in the long term, and maintains muscular integrity. A metabolomic analysis revealed that muscle down-regulation of Marf and Opa1 promotes a non-autonomous systemic metabolome reorganization, mainly affecting metabolites involved in the energetic homeostasis: carbohydrates, lipids and aminoacids. Interestingly, the differences are consistently more evident in younger flies, implying that there may exist an anticipative adaptation mediating the protective changes at the older age. We demonstrate that mild mitochondrial muscle disturbance plays an important role in Drosophila fitness and reveals metabolic connections between tissues. This study opens new avenues to explore the link of mitochondrial dynamics and inter-organ communication, as well as their relationship with muscle-related pathologies, or in which muscle aging is a risk factor for their appearance. Our results suggest that early intervention in muscle may prevent sarcopenia and promote healthy aging.  相似文献   
89.
90.
A functional interaction between progesterone, Th2 cytokines and a suitable balance between nitric oxide and prostaglandins in the uterus is considered to have a major role in the success of embryo implantation and pregnancy. Non-obese diabetic (NOD) mice offer a suitable model to study the modulatory role of Th1 cytokines on uterus signalling and function, since at the prediabetic stage they develop a spontaneous Th1 autoimmune response against exocrine glands similar to Sj?gren's syndrome. Vasoactive intestinal peptide (VIP) is a vasoactive neuro- and immunopeptide that promotes Th2 profiles and contributes to the smooth muscle relaxation and vasodilation. The aim of the present study was to investigate the activities of nitric oxide synthase and cyclo-oxygenase and the effect of VIP in the uterus of NOD mice with an emerging Th1 cytokine response. We present evidence of a reduced basal and VIP-stimulated activity of both enzymes in the uterus of NOD mice compared with normal BALB/c mice in proestrus. An altered functional interaction between both enzymes is also present in NOD mice at the time when increased levels of serum interleukin (IL)-12 and tumour necrosis factor-alpha but not interferon (IFN)-gamma or IL-10 were detected. We conclude that signalling alterations in uteri of NOD mice are simultaneous to the onset of a systemic Th1 cytokine response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号