首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40887篇
  免费   14892篇
  国内免费   10篇
电工技术   782篇
综合类   3篇
化学工业   17917篇
金属工艺   414篇
机械仪表   770篇
建筑科学   1843篇
矿业工程   5篇
能源动力   947篇
轻工业   7301篇
水利工程   300篇
石油天然气   56篇
武器工业   1篇
无线电   7319篇
一般工业技术   12036篇
冶金工业   888篇
原子能技术   38篇
自动化技术   5169篇
  2023年   22篇
  2022年   53篇
  2021年   283篇
  2020年   1484篇
  2019年   3214篇
  2018年   3178篇
  2017年   3484篇
  2016年   3970篇
  2015年   4012篇
  2014年   3979篇
  2013年   5175篇
  2012年   2879篇
  2011年   2565篇
  2010年   2797篇
  2009年   2642篇
  2008年   2235篇
  2007年   2065篇
  2006年   1808篇
  2005年   1503篇
  2004年   1450篇
  2003年   1398篇
  2002年   1373篇
  2001年   1145篇
  2000年   1123篇
  1999年   507篇
  1998年   111篇
  1997年   118篇
  1996年   89篇
  1995年   77篇
  1994年   79篇
  1993年   57篇
  1992年   57篇
  1991年   53篇
  1990年   60篇
  1989年   49篇
  1988年   33篇
  1987年   38篇
  1986年   35篇
  1985年   51篇
  1984年   51篇
  1983年   41篇
  1982年   47篇
  1981年   39篇
  1980年   21篇
  1979年   33篇
  1978年   27篇
  1977年   25篇
  1976年   26篇
  1975年   20篇
  1974年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Recently, polymer‐coated magnetite (Fe3O4) nanoparticles (NPs) are extensively studied for applications in therapeutics or diagnostics using photothermal effect. Therefore, it is essential to understand the interactions between Fe3O4 NPs and polymers when optical stimuli are applied. Herein, the photonic reactions of Fe3O4 NPs and polymer composites upon application of a 780 nm multiphoton laser are analyzed. The photonic reactions produce unique results including fluorescence from conformationally changed polymer and low‐temperature phase transformation of Fe3O4 NPs. Typically, π‐conjugated chains are formed, inducing fluorescence through a series of main and side‐chain cleavage reactions of polymers with the aliphatic chain. In addition, fluorescence is detected in the cellular system by photonic reactions between Fe3O4 NPs and biomolecules. After multiphoton laser irradiation, light emission is detected near the intracellular Fe3O4 NPs, and a stronger intensity is observed in large‐sized NPs.  相似文献   
962.
Gold‐coated nanodisk arrays of nearly micron periodicity are reported that have high figure of merit (FOM) and sensitivity necessary for plasmonic refractometric sensing, with the added benefit of suitability for surface‐enhanced Raman scattering (SERS), large‐scale microfabrication using standard photolithographic techniques and a simple instrumental setup. Gold nanodisk arrays are covered with a gold layer to excite the Bragg modes (BM), which are the propagative surface plasmons localized by the diffraction from the disk array. This generates surface‐guided modes, localized as standing waves, leading to highly confined fields confirmed by a mapping of the SERS intensity and numerical simulations with 3D finite element method. The optimal gold‐coated nanodisk arrays are applied for refractometric sensing in transmission spectroscopy with better performance than nanohole arrays and they are integrated to a 96‐well plate reader for detection of IgY proteins in the nanometer range in PBS. The potential for sensing in biofluids is assessed with IgG detection in 1:1 diluted urine. The structure exhibits a high FOM of up to 46, exceeding the FOM of structures supporting surface plasmon polaritons and comparable to more complex nanostructures, demonstrating that subwavelength features are not necessary for high‐performance plasmonic sensing.  相似文献   
963.
Hydrogels have many applications in biomedical surface modification and tissue engineering. However, the structuring of hydrogels after their formation represents still a major challenge, in particular due to their softness. Here, a novel approach is presented that is based on the combination of atomic force microscopy (AFM) and nanofluidics, also referred to as FluidFM technology. Its applicability is demonstrated for supramolecular hydrogel films that are prepared from low‐molecular weight hydrogelators, such as derivates of 1,3,5‐benzene tricarboxamides (BTAs). BTA films can be dissolved selectively by ejecting alkaline solution through the aperture of a hollow AFM‐cantilever connected to a nanofluidic controller. The AFM‐based force control is essential in preventing mechanical destruction of the hydrogels. The resulting “chemical writing” process is studied in detail and the influence of various parameters, such as applied pressure and time, is validated. It is demonstrated that the achievable structuring precision is primarily limited by diffusion and the aperture dimensions. Recently, various additive techniques have been presented to pattern hydrogels. The here‐presented subtractive approach can not only be applied to structure hydrogels from the large class of reversibly formed gels with superior resolution but would also allow for the selective loading of the hydrogels with active substances or nanoparticles.  相似文献   
964.
The surface energy and surface stability of Ag nanocrystals (NCs) are under debate because the measurable values of the surface energy are very inconsistent, and the indices of the observed thermally stable surfaces are apparently in conflict. To clarify this issue, a transmission electron microscope is used to investigate these problems in situ with elaborately designed carbon‐shell‐capsulated Ag NCs. It is demonstrated that the {111} surfaces are still thermally stable at elevated temperatures, and the victory of the formation of {110} surfaces over {111} surfaces on the Ag NCs during sublimation is due to the special crystal geometry. It is found that the Ag NCs behave as quasiliquids during sublimation, and the cubic NCs represent a featured shape evolution, which is codetermined by both the wetting equilibrium at the Ag–C interface and the relaxation of the system surface energy. Small Ag NCs (≈10 nm) no longer maintain the wetting equilibrium observed in larger Ag NCs, and the crystal orientations of ultrafine Ag NCs (≈6 nm) can rotate to achieve further shape relaxation. Using sublimation kinetics, the mean surface energy of Ag NCs at 1073 K is calculated to be 1.1–1.3 J m?2.  相似文献   
965.
As a characteristic trait of most tumor types, metastasis is the major cause of the death of patients. In this study, a photothermal agent based on gold nanorod is coated with metal (Gd3+)‐organic (polyphenol) network to realize combination therapy for metastatic tumors. This nanotheranostic system significantly enhances antitumor therapeutic effects in vitro and in vivo with the combination of photothermal therapy (PTT) and chemotherapy, also can remarkably prevent the invasion and metastasis due to the presence of polyphenol. After the treatment, an 81% decrease in primary tumor volumes and a 58% decrease in lung metastasis are observed. In addition, the good performance in magnetic resonance imaging, computerized tomography, and photothermal imaging of the nanotheranostic system can realize image‐guided therapy. The multifunctional nanotheranostic system will find a great potential in diagnosis and treatment integration in tumor treatments, and broaden the applications of PTT treatment.  相似文献   
966.
Enhancing the fluorescence intensity of colloidal quantum dots (QDs) in case of color‐conversion type QD light‐emitting devices (LEDs) is very significant due to the large loss of QDs and their quantum yields during fabrication processes, such as patterning and spin‐coating, and can therefore improve cost‐effectiveness. Understanding the enhancement process is crucial for the design of metallic nanostructure substrates for enhancing the fluorescence of colloidal QDs. In this work, improved color conversion of colloidal green and red QDs coupled with aluminum (Al) and silver (Ag) nanodisk (ND) arrays designed by in‐depth systematic finite‐difference time domain simulations of excitation, spontaneous emission, and quantum efficiency enhancement is reported. Calculated results of the overall photoluminescence enhancement factor in the substrate of 500 × 500 µm2 size are 2.37‐fold and 2.82‐fold for Al ND‐green QD and Ag ND‐red QD structures, respectively. Experimental results are in good agreement, showing 2.26‐fold and 2.66‐fold enhancements for Al ND and Ag ND structures. Possible uses of plasmonics in cases such as white LED and total color conversion for possible display applications are discussed. The theoretical treatments and experiments shown in this work are a proof of principle for future studies of plasmonic enhancement of various light‐emitting materials.  相似文献   
967.
Sodium–ion batteries (NIBs), due to the advantages of low cost and relatively high safety, have attracted widespread attention all over the world, making them a promising candidate for large‐scale energy storage systems. However, the inherent lower energy density to lithium–ion batteries is the issue that should be further investigated and optimized. Toward the grid‐level energy storage applications, designing and discovering appropriate anode materials for NIBs are of great concern. Although many efforts on the improvements and innovations are achieved, several challenges still limit the current requirements of the large‐scale application, including low energy/power densities, moderate cycle performance, and the low initial Coulombic efficiency. Advanced nanostructured strategies for anode materials can significantly improve ion or electron transport kinetic performance enhancing the electrochemical properties of battery systems. Herein, this Review intends to provide a comprehensive summary on the progress of nanostructured anode materials for NIBs, where representative examples and corresponding storage mechanisms are discussed. Meanwhile, the potential directions to obtain high‐performance anode materials of NIBs are also proposed, which provide references for the further development of advanced anode materials for NIBs.  相似文献   
968.
969.
All‐solution processed, high‐performance wearable strain sensors are demonstrated using heterostructure nanocrystal (NC) solids. By incorporating insulating artificial atoms of CdSe quantum dot NCs into metallic artificial atoms of Au NC thin film matrix, metal–insulator heterostructures are designed. This hybrid structure results in a shift close to the percolation threshold, modifying the charge transport mechanism and enhancing sensitivity in accordance with the site percolation theory. The number of electrical pathways is also manipulated by creating nanocracks to further increase its sensitivity, inspired from the bond percolation theory. The combination of the two strategies achieves gauge factor up to 5045, the highest sensitivity recorded among NC‐based strain gauges. These strain sensors show high reliability, durability, frequency stability, and negligible hysteresis. The fundamental charge transport behavior of these NC solids is investigated and the combined site and bond percolation theory is developed to illuminate the origin of their enhanced sensitivity. Finally, all NC‐based and solution‐processed strain gauge sensor arrays are fabricated, which effectively measure the motion of each finger joint, the pulse of heart rate, and the movement of vocal cords of human. This work provides a pathway for designing low‐cost and high‐performance electronic skin or wearable devices.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号