首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2633篇
  免费   118篇
  国内免费   15篇
电工技术   84篇
综合类   5篇
化学工业   629篇
金属工艺   87篇
机械仪表   101篇
建筑科学   69篇
矿业工程   2篇
能源动力   207篇
轻工业   259篇
水利工程   39篇
石油天然气   34篇
无线电   283篇
一般工业技术   483篇
冶金工业   213篇
原子能技术   16篇
自动化技术   255篇
  2024年   5篇
  2023年   34篇
  2022年   59篇
  2021年   129篇
  2020年   85篇
  2019年   86篇
  2018年   124篇
  2017年   97篇
  2016年   105篇
  2015年   74篇
  2014年   95篇
  2013年   259篇
  2012年   174篇
  2011年   172篇
  2010年   119篇
  2009年   118篇
  2008年   101篇
  2007年   85篇
  2006年   76篇
  2005年   57篇
  2004年   49篇
  2003年   56篇
  2002年   46篇
  2001年   47篇
  2000年   48篇
  1999年   31篇
  1998年   69篇
  1997年   45篇
  1996年   39篇
  1995年   38篇
  1994年   20篇
  1993年   30篇
  1992年   8篇
  1991年   16篇
  1990年   13篇
  1989年   12篇
  1988年   23篇
  1987年   21篇
  1986年   15篇
  1985年   12篇
  1984年   15篇
  1983年   7篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1979年   7篇
  1978年   4篇
  1976年   6篇
  1975年   6篇
  1973年   3篇
排序方式: 共有2766条查询结果,搜索用时 15 毫秒
101.
Fabrication of deep holes (depth to diameter ratio >10) using electrical discharge drilling (EDD) has gained momentum in the areas of aerospace, automotive and biomedical industries. However, formation of recirculation zones in flushing channel causes accumulation of debris particles at higher depths of drilling. This leads to secondary discharges within the flushing channel resulting in excessive tool wear, dimensional inaccuracy and hole tapering. The present paper proposes a novel tool geometry having orifices at the bottom end of tool electrode with an aim to improve debris evacuation. The effectiveness of proposed method is established through CFD simulations and experiments.  相似文献   
102.
A series of ZnO-CdO thin films of different molar ratios of Zn and Cd have been deposited on glass substrate at substrate temperature ~ 360 ℃ by the spray pyrolysis technique at an ambient atmosphere. X-ray diffraction (XRD) studies confirmed the polycrystalline nature of the film and modulated crystal structures of wurtzite (ZnO) and cubic (CdO) are formed. The evaluated lattice parameters, and crystallite size are consistent with literature. Dislocation density and strain increased in the film as the grain sizes of ZnO and CdO are decreased. The band gap energy varies from 3.20 to 2.21 eV depending on the Zn/Cd ratios in the film. An incident photon intensity dependent I-V study confirmed that the films are highly photosensitive. Current increased with the increase of the intensity of the light beam. The optical conductivity and the optical constants, such as extinction coefficient, refractive index and complex dielectric constants are evaluated from transmittance and reflectance spectra of the films and these parameters are found to be sensitive to photon energy and displayed intermediate optical properties between ZnO and CdO, making it preferable for applications as the buffer and window layers in solar cells.  相似文献   
103.
In this research, the mechanical, acoustical, thermal, morphological, and infrared spectral properties of untreated, heat and alkaline‐treated sisal fiber‐reinforced poly‐lactic‐acid bio‐composites were analyzed. The bio‐composite samples were fabricated using a hot press molding machine. The properties mentioned above were evaluated and compared with heat‐treated and alkaline‐treated sisal fibers. Composites with heat‐treated sisal fibers were found to exhibit the best mechanical properties. Thermo‐gravimetric analysis (TGA) was conducted to study the thermal degradation of the bio‐composite samples. It was discovered that the PLA‐sisal composites with optimal heat‐treated at 160°C and alkaline‐treated fibers possess good thermal stability as compared with untreated fiber. The results indicated that the composites prepared with 30wt % of sisal had the highest sound absorption as compared with other composites. Evidence of the successful reaction of sodium hydroxide and heat treatment of the sisal fibers was provided by the infrared spectrum and implied by decreased bands at certain wavenumbers. Observations based on scanning electron microscopy of the fracture surface of the composites showed the effect of alkaline and heat treatment on the fiber surface and improved fiber‐matrix adhesion. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42470.  相似文献   
104.
Dopamine (3,4-dihydroxylphenyl ethylamine) is the most significant neurotransmitter in the human nervous system. Abnormal dopamine levels cause fatal neurological disorders, and thus measuring dopamine level in actual samples is important. Although electrochemical methods have been developed for detecting dopamine with high accuracy, certain substances (e.g., ascorbic acid) in actual samples often interfere with electrochemical dopamine detection. We developed tyrosinase-based dopamine biosensor with high sensitivity and selectivity. An electrochemically pretreated tyrosinase/multi-walled carbon nanotube-modified glassy carbon electrode (tyrosinase/MWNT/GCE) was prepared as an amperometric biosensor for selective dopamine detection. For optimizing the biosensor performance, pH, temperature, and scan rate were investigated. The electrochemically pretreated tyrosinase/MWNT/GCE exhibited not only the highest sensitivity (1,323 mAM?1 cm?2) compared to previously reported tyrosinase-based dopamine sensors, but also good long-term stability, retaining 90% of initial activity after 30 days. Additionally, ascorbic acid, a major interfering substances, was not oxidized at the potential used to detect dopamine oxidation, and the interfering effect of 4mM ascorbic acid was negligible when monitoring 1mM dopamine. Consequently, the electrochemically pretreated tyrosinase/MWNT/GCE is applicable for highly selective and sensitive dopamine detection in actual samples including interfering substances, thereby extending the practical use to monitor and diagnose neurological disorders.  相似文献   
105.
Today’s lithium (Li)-ion batteries have been widely adopted as the power of choice for small electronic devices through to large power systems such as hybrid electric vehicles (HEVs) or electric vehicles (EVs). However, it falls short of meeting the demands of new markets in these areas of EVs or HEVs due to insufficient energy density. Therefore, new battery systems such as Li–air batteries with high theoretical specific energy are being intensively investigated, as this technology could potentially make long-range EVs widely affordable. So far, Li–air battery technology is still in its infancy and will require significant research efforts. This review provides a comprehensive overview of the fundamentals of Li–air batteries, with an emphasis on the recent progress of various elements, such as lithium metal anode, cathode, electrolytes, and catalysts. Firstly, it covers the various types of air cathode used, such as the air cathode based on carbon, the carbon nanotube-based cathode, and the graphene-based cathode. Secondly, different types of catalysts such as metal oxide- and composite-based catalysts, carbon- and graphene-based catalysts, and precious metal alloy-based catalysts are elaborated. The challenges and recent developments on electrolytes and lithium metal anode are then summarized. Finally, a summary of future research directions in the field of lithium air batteries is provided.  相似文献   
106.
A conventional free‐radical initiating process was used to prepare graft copolymers from acrylonitrile (AN) with corn‐cob cellulose with ceric ammonium nitrate (CAN) as an initiator. The optimum grafting was achieved with corn‐cob cellulose (anhydroglucose unit, AGU), mineral acid (H2SO4), CAN, and AN at concentrations of 0.133, 0.081, 0.0145, and 1.056 mol/L, respectively. Furthermore, the nitrile functional groups of the grafted copolymers were converted to amidoxime ligands with hydroxylamine under basic conditions of pH 11 with 4 h of stirring at 70°C. The purified acrylic polymer‐grafted cellulose and polyamidoxime ligand were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy analysis. The ligand showed an excellent copper binding capacity (4.14 mmol/g) with a faster rate of adsorption (average exchange rate = 7 min), and it showed a good adsorption capacity for other metal ions as well. The metal‐ion adsorption capacities of the ligand were pH‐dependent in the following order: Cu2+ > Co2+ > Mn2+ > Cr3+ > Fe3+ > Zn2+ > Ni2+. The metal‐ion removal efficiency was very high; up to 99% was removed from the aqueous media at a low concentration. These new polymeric chelating ligands could be used to remove aforementioned toxic metal ions from industrial wastewater. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40833.  相似文献   
107.
108.
Rare earth-doped ZnO hierarchical micro/nanospheres were prepared by a facile chemical precipitation method and characterized by X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-visible diffuse reflectance spectroscopy and photoluminescence spectroscopy. The results showed that the as-synthesized products were well-crystalline and accumulated by large amount of interleaving nanosheets. It was also observed that the rare earth doping increased the visible light absorption ability of the catalysts and red shift for rare earth-doped ZnO products appeared when compared to pure ZnO. The photocatalytic studies revealed that all the rare earth-doped ZnO products exhibited excellent photocatalytic degradation of phenol compared with the pure ZnO and commercial TiO2 under visible light irradiation. Nd-doped ZnO had the highest photocatalytic activity among all of the rare earth-doped ZnO products studied. The optimal Nd content was 2.0 at% under visible light irradiation. The enhanced photocatalytic performance of rare earth-doped ZnO products can be attributed to the increase in the rate of separation of photogenerated electron–hole pairs and hydroxyl radicals generation ability as evidenced by photoluminescence spectra.  相似文献   
109.
Poly(3′,4′‐ethylenedioxy‐2,2′:5′,2″‐terthiophene)/ZnO(poly(TET)/ZnO) composites with the ratio of poly(TET) and nano‐ZnO from 3:1 to 1:3 were synthesized by hand grinding and ball milling methods, respectively. The photocatalytic activities of the composites were examined through the degradation processes of methylene blue (MB) solution under UV light irradiation, and the possible mechanism for the photocatalytic activity enhancement by synergetic effects between nano‐ZnO and poly(TET) was proposed. The results showed that the strong interactions between the poly(TET) and nano‐ZnO occurred in the case of ball milling method. The results also proved that the crystallinity of ZnO was not disturbed in both of methods, and the nano‐ZnO was uniformly distributed in polymer matrix in the case of ball milling method. The comparative studies showed that the addition of the nano‐ZnO could enhance the photocatalytic activities of the composites. The highest degradation efficiency (100%) at 3 h under UV light irradiation occurred in the case of poly(TET)/ZnO(1:1) synthesized by ball milling method. Furthermore, the nanocompsosite displayed higher photocatalytic activity than nano‐ZnO, which was due to the holes (h+) transferring from the valence band of ZnO to the polymer backbone and the adsorption of MB molecules in polymer matrix via π–π conjugation between MB and aromatic regions of the poly(TET). POLYM. COMPOS., 36:1597–1605, 2015. © 2014 Society of Plastics Engineers  相似文献   
110.
Breast cancer is one of the most common types of cancer among women globally. It is caused by mutations in the estrogen/progesterone receptors and conventional treatment methods are commonly utilized. About 70–80 percent of individuals with the early-stage non-metastatic disease may be cured. Conventional treatment is far less than the optimal ratio, as demonstrated through the high mortality rate of women with this cancer. However, conventional treatment methods like surgery, radiotherapy, and chemotherapy are not as effective as expected and lead to concerns about low bioavailability, low cellular uptake, emerging resistance, and adverse toxicities. A nanomedicine-based approach is a promising alternative for breast cancer treatment. The present era is witnessing rapid advancements in nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. This paper focuses on nanomedicine-based therapeutic interventions that are becoming more widely accepted for improving treatment effectiveness and reducing undesired side effects in breast cancer patients. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号