首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346474篇
  免费   5065篇
  国内免费   885篇
电工技术   6686篇
综合类   1182篇
化学工业   50739篇
金属工艺   10857篇
机械仪表   9642篇
建筑科学   8698篇
矿业工程   1250篇
能源动力   8951篇
轻工业   32885篇
水利工程   3035篇
石油天然气   3716篇
武器工业   12篇
无线电   41391篇
一般工业技术   61471篇
冶金工业   74250篇
原子能技术   5627篇
自动化技术   32032篇
  2021年   2348篇
  2019年   2180篇
  2018年   4038篇
  2017年   4090篇
  2016年   4546篇
  2015年   3285篇
  2014年   4834篇
  2013年   14650篇
  2012年   9306篇
  2011年   12377篇
  2010年   8504篇
  2009年   9824篇
  2008年   10144篇
  2007年   10129篇
  2006年   9014篇
  2005年   11026篇
  2004年   10201篇
  2003年   9451篇
  2002年   8142篇
  2001年   8238篇
  2000年   7464篇
  1999年   8033篇
  1998年   22636篇
  1997年   15874篇
  1996年   12134篇
  1995年   9069篇
  1994年   8061篇
  1993年   7807篇
  1992年   5478篇
  1991年   5299篇
  1990年   5167篇
  1989年   5008篇
  1988年   4916篇
  1987年   4060篇
  1986年   4175篇
  1985年   4858篇
  1984年   4332篇
  1983年   4083篇
  1982年   3702篇
  1981年   3910篇
  1980年   3631篇
  1979年   3464篇
  1978年   3311篇
  1977年   4352篇
  1976年   5997篇
  1975年   2870篇
  1974年   2692篇
  1973年   2715篇
  1972年   2252篇
  1971年   2006篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
Enhanced gravity concentrators such as Knelson concentrator (KC) are extensively used in the mineral processing industry. The complexities of KC bowl geometry and variation of feed characteristics have forced process engineers to design empirically new units using laboratory and pilot-scale Knelson concentrators. However, numerical modelling methods such as computational fluid dynamics (CFD) and discrete element method (DEM) provide a better insight of flow behaviour of fluid and particulate solid phases inside these processing units. This article reports findings of CFD simulations for single-phase water flow inside the laboratory KC. An available standard 7.5-cm laboratory KC bowl was numerically simulated using realisable k-ε turbulence model to resolve the turbulence dispersion of existing transitional flow regime. The effects of relative centrifugal force (RCF) intensity and bed fluidisation water flow rate on the water velocity and pressure distributions were studied. Simulations confirmed the swirling flow pattern governing inside the bowl. The results revealed that the impact of RCF intensity on the water field values is greater than that of bed fluidisation water flow rate. Both velocity and pressure variations inside the bowl rings followed a linear trend.  相似文献   
72.
Context and objective: The aim of this study was to develop, characterize and evaluate a mucoadhesive caplet resulting from a polymeric blend (polymeric caplet) for intravaginal anti-HIV-1 delivery.

Materials and methods: Poly(lactic-co-glycolic) acid, ethylcellulose, poly(vinylalcohol), polyacrylic acid and modified polyamide 6, 10 polymers were blended and compressed to a caplet-shaped device, with and without two model drugs 3′-azido-3′-deoxythymidine (AZT) and polystyrene sulfonate (PSS). Thermal analysis, infrared spectroscopy and microscopic analysis were carried out on the caplets employing temperature-modulated DSC (TMDSC), Fourier transform infra-red (FTIR) spectrometer and scanning electron microscope, respectively. In vitro and in vivo drug release analyses as well as the histopathological toxicity studies were carried out on the drug-loaded caplets. Furthermore, molecular mechanics (MM) simulations were carried out on the drug-loaded caplets to corroborate the experimental findings.

Results and discussion: There was a big deviation between the Tg of the polymeric caplet from the Tg's of the constituent polymers indicating a strong interaction between constituent polymers. FTIR spectroscopy confirmed the presence of specific ionic and non-ionic interactions within the caplet. A controlled near zero-order drug release was obtained for AZT (20 d) and PSS (28 d). In vivo results, i.e. the drug concentration in plasma ranged between 0.012–0.332?mg/mL and 0.009–0.256?mg/mL for AZT and PSS over 1–28 d.

Conclusion: The obtained results, which were corroborated by MM simulations, attested that the developed system has the potential for effective delivery of anti-HIV-agents.  相似文献   
73.
C-axis textured thin films of gallium-doped indium zinc oxide (GIZO) with a 2% ratio of Ga/Zn, were obtained via RF-magnetron sputtering with high transparency and electrical conductivity. A Box-Behnken response surface design was used to evaluate the effects of the deposition parameters (In2O3 target power, deposition time, and substrate temperature) on the chemical composition, optical, electrical, and structural properties of the GIZO films. The optical constants and the electrical properties were obtained using optical models. The GIZO stoichiometry, and therefore the In/Zn atomic ratio, affected the crystallinity, crystalline parameters, band gap, and charge carrier mobility of the GIZO films. The charge carrier density was related to the change in the crystalline parameters of the hexagonal structure and the In/Zn atomic ratio. The best electrical conductivity values (1.75?×?103 Ω?1 cm?1) were obtained for GIZO films with In/Zn ratio ≥?1. Several figures of merit (FOM) defined for the visible and solar regions were comparatively used to select the optimal In/Zn atomic ratio that provided the best balance between the conductivity and the transparency. The optimal In/Zn ratio was in a range of 0.85–0.90 for the GIZO films.  相似文献   
74.
Titania-based ceramics with adjustable anatase-rutile fractions were obtained by milling of anatase, quartz and corundum precursors, uniaxial pressing and firing at 1100?°C. The influence of silica and alumina, combined with milling time and compaction pressure, was studied by design of experiments. The L9 orthogonal array with a three-level noise factor was employed. Firing of pure titania at 1100?°C yielded complete anatase to rutile transformation (ART), whereas stabilized samples show that an optimum amount of 9% silica and 33% alumina reduces phase transformation to only about 5?wt% rutile. An extended correlation matrix combined with analysis of variance (ANOVA) was applied to assess the combined effects of quartz, alumina, milling time and uniaxial compressing pressure on relative density, and anatase to rutile transformation. Results show absence of ART after milling, and controlled partial conversion of anatase to rutile after firing. Very good fitting was obtained by multivariate analysis on considering first and second order terms for dependence on silica contents and interactions between silica and each of the remaining factors, including milling time. This empirical dependence could be interpreted on a sound physicochemical basis, allowing the prediction of suitable compositions and processing conditions to obtain rutile-free samples by conventional ceramic processing, and to design ceramic samples with controlled fractions of anatase and rutile.  相似文献   
75.
The consequences of high energy mechanical milling, microwave-assisted heating and rapid thermal cooling on magnetic ordering in polycrystalline CaCu3Ti4O12 cubic perovskite have been investigated by means of X-ray powder diffractometry (300?K), dc magnetization in field – cooled and zero – field cooled modes (H = 100?Oe and 1000?Oe, T?=?5–300?K) (MT curves) and MH loop characteristics (T?=?5?K and 300?K, Hmax = 70?kOe). The MT curves of unmilled and 16?h milled samples show pure antiferromagnetic and weak ferromagnetic ordering, respectively, 1?h and 6?h milled samples demonstrate the coexistence of both the phases while microwave-assisted and quenched samples exhibit classic antiferromagnetic transition and a low temperature paramagnetic–like contribution with different weights, well supported by the MH loop characteristics. The observed transformations in the magnetic ordering are attributed to the ball-milling induced stress which curtails hybridization of empty Ti-3d orbitals with Cu-3d and O-2p orbitals and secondary phase formation. Oxygen vacancies associated with bound magnetic polarons originate ferromagnetism in the milled samples while unpaired electrons inhabited at the empty sites are the cause of paramagnetic centers. The low-temperature Curie – tail in MT curve for quenched and microwave assisted samples is attributed to Ti3+ cations.  相似文献   
76.
77.
The current study establishes the unprecedented involvement in the evolution and production of novel core–shell nanocomposites composed of nanosized titanium dioxide and aniline‐o‐phenylenediamine copolymer. TiO2@copoly(aniline and o‐phenylenediamine) (TiO2@PANI‐o‐PDA) core–shell nanocomposites were chemically synthesized in a molar ratio of 5:1 of the particular monomers and several weights of nano‐TiO2 via oxidative copolymerization. The construction of the TiO2@PANI‐o‐PDA core–shell nanocomposites was ascertained from Fourier transform IR spectroscopy, UV–visible spectroscopy and XRD. A reasonable thermal behavior for the original copolymer and the TiO2@PANI‐o‐PDA core–shell nanocomposites was investigated. The bare PANI‐o‐PDA copolymer was thermally less stable than the TiO2@PANI‐o‐PDA nanocomposites. The core–shell feature of the nanocomposites was found to have core and shell sizes of 17 nm and 19–26 nm, respectively. In addition, it was found that the addition of a high ratio of TiO2 nanoparticles increases the electrical conductivity and consequently lowers the electrical resistivity of the TiO2@PANI‐o‐PDA core–shell nanocomposites. The hybrid photocatalysts exhibit a dramatic photocatalytic efficacy of methylene blue degradation under solar light irradiation. A plausible interpretation of the photocatalytic degradation results of methylene blue is also demonstrated. Our setup introduces a facile, inexpensive, unique and efficient technique for developing new core–shell nanomaterials with various required functionalities and colloidal stabilities. © 2018 Society of Chemical Industry  相似文献   
78.
79.
The data on the use of solar photovoltaic plants (PVPs) for providing a reliable and guaranteed power supply to telecommunication systems and cellular communication systems in the conditions prevalent in Uzbekistan are given. The research-based structures developed by OOO MIR SOLAR and the selection of PVP elements ensuring their reliable operation are described. The main influencing factors are discussed, and the use of effective combinations of different types of panels (from monocrystalline and polycrystalline silicon) and a specially developed controller are considered.  相似文献   
80.
This work investigates the effect of the addition of small amounts of Ru (0.5‐1 wt%) to carbon supported Co (10 wt%) catalysts towards both NaBH4 and NH3BH3 hydrolysis for H2 production. In the sodium borohydride hydrolysis, the activity of Ru‐Co/carbon catalysts was sensibly higher than the sum of the activities of corresponding monometallic samples, whereas for the ammonia borane hydrolysis, the positive effect of Ru‐Co systems with regard to catalytic activity was less evident. The performances of Ru‐Co bimetallic catalysts correlated with the occurrence of an interaction between Ru and Co species resulting in the formation of smaller ruthenium and cobalt oxide particles with a more homogeneous dispersion on the carbon support. It was proposed that Ru°, formed during the reduction step of the Ru‐Co catalysts, favors the H2 activation, thus enhancing the reduction degree of the cobalt precursor and the number of Co nucleation centers. A subsequent reduction of cobalt and ruthenium species also occurs in the hydride reaction medium, and therefore the state of the catalyst before the catalytic experiment determines the state of the active phase formed in situ. The different relative reactivity of the Ru and Co active species towards the two investigated reactions accounted for the different behavior towards NaBH4 and NH3BH3 hydrolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号