全文获取类型
收费全文 | 84874篇 |
免费 | 1006篇 |
国内免费 | 417篇 |
专业分类
电工技术 | 794篇 |
综合类 | 2319篇 |
化学工业 | 11712篇 |
金属工艺 | 4803篇 |
机械仪表 | 3058篇 |
建筑科学 | 2178篇 |
矿业工程 | 563篇 |
能源动力 | 1208篇 |
轻工业 | 3656篇 |
水利工程 | 1276篇 |
石油天然气 | 350篇 |
无线电 | 9379篇 |
一般工业技术 | 16570篇 |
冶金工业 | 2687篇 |
原子能技术 | 267篇 |
自动化技术 | 25477篇 |
出版年
2024年 | 19篇 |
2023年 | 33篇 |
2022年 | 87篇 |
2021年 | 78篇 |
2020年 | 78篇 |
2019年 | 49篇 |
2018年 | 14510篇 |
2017年 | 13421篇 |
2016年 | 9991篇 |
2015年 | 636篇 |
2014年 | 299篇 |
2013年 | 320篇 |
2012年 | 3199篇 |
2011年 | 9478篇 |
2010年 | 8325篇 |
2009年 | 5609篇 |
2008年 | 6827篇 |
2007年 | 7820篇 |
2006年 | 149篇 |
2005年 | 1251篇 |
2004年 | 1159篇 |
2003年 | 1180篇 |
2002年 | 556篇 |
2001年 | 112篇 |
2000年 | 183篇 |
1999年 | 63篇 |
1998年 | 66篇 |
1997年 | 39篇 |
1996年 | 49篇 |
1995年 | 16篇 |
1994年 | 23篇 |
1993年 | 10篇 |
1992年 | 17篇 |
1991年 | 22篇 |
1969年 | 24篇 |
1968年 | 43篇 |
1967年 | 33篇 |
1966年 | 42篇 |
1965年 | 44篇 |
1964年 | 11篇 |
1963年 | 28篇 |
1962年 | 22篇 |
1961年 | 18篇 |
1960年 | 30篇 |
1959年 | 35篇 |
1958年 | 37篇 |
1957年 | 36篇 |
1956年 | 34篇 |
1955年 | 63篇 |
1954年 | 68篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Water-lubricated polymer is attracting more and more interest from the industry. Adding nanoparticles is considered to be an effective way to improve the tribological performance. In this work, water-lubricated Polyetheretherketone (PEEK)-steel contacts were employed as the objects of study. A careful comparative study was made by investigating the effect of adding graphene oxide (GO) into water or into PEEK. Results show that adding GO into water can significantly reduce the wear and friction coefficient of pure PEEK, which is much more effective than adding GO into PEEK. Under the lubrication of GO aqueous dispersion, the wear of PEEK remains very low even under a harsh condition where the pressure reaches 50 MPa and the linear sliding speed is 0.7 m/s. Neat PEEK and GO/PEEK composites in pure water exhibit serious wear under this harsh condition. The excellent lubricating properties of GO aqueous dispersion are attributed to GO nanosheets entering into solid contacts, which can not only form a protective layer on steel counterpart repairing the worn surface, but also strongly adhere to the PEEK matrix resulting in an in situ-formed GO coating and prevent the scratch by steel counterpart. 相似文献
992.
993.
Ultra-high molecular weight polyethylene (UHMWPE)/ graphene nanoplatelets (GNPs) nanocomposite coatings were developed to reduce friction and wear in the absence of liquid lubrication. UHMWPE nanocomposite powders with different loadings (0.25, 1, and 2 wt.%) of GNPs were prepared and electrostatic spraying technique was then used to deposit the nanocomposite powders on aluminum alloy to form a thin coating. Friction and wear tests were conducted on the coatings against a flat-end pin, made of hardened tool steel to determine the best loading of GNPs. That was further tested to investigate the effect of sliding speed and contact pressure on its tribological properties and to establish coating operating limits. Results showed that UHMWPE nanocomposite coating reinforced with 1 wt.% GNPs showed the best tribological performance. It reduced wear rate by about 51% as compared to the pristine UHMWPE coating. The coating sustained a maximum sliding speed of 1 m/s at a contact pressure of 4 MPa equivalent to a pressure and velocity (PV) value of 4 MPa.m/s. 相似文献
994.
The current work considers the multi-scale nature of roughness in a new model that predicts the static friction coefficient. This work is based upon a previous rough surface contact model, which used stacked elastic–plastic 3-D sinusoids to model the asperities at multiple scales of roughness. A deterministic model of a three-dimensional deformable rough surface pressed against a rigid flat surface is also carried out using the finite element method (FEM). The accuracy of the deterministic FEM model is also considered. At the beginning of contact, which is surface-point contact, the asperities or peaks are isolated, sharp, and the contact areas consist of an inadequate number of elements and sources of error. In this range of contact, the results are not presented as real or accurate. As the normal load increases, the number of the contact elements become larger, and thus, the results become more accurate. That is, the deterministic FEM results are most accurate at high loads. Spectral interpolation is used to smooth the geometry in between the original measured nodes. The effects of normal load and plasticity index on static friction are then analyzed. The results predicted by the theoretical model are also compared to other existing rough surface friction contact models and the FEM results. They are in a good qualitative agreement, especially for higher loads and higher plasticity indices. The FEM model also has significant error, but it is more accurate at higher loads where the proposed multi-scale static friction model and FEM model are in better agreement. 相似文献
995.
Liang LUO Zhengyi JIANG Dongbin WEI Xiaogang WANG Cunlong ZHOU Qingxue HUANG 《Frontiers of Mechanical Engineering》2018,13(1):66-73
Micro-metal products have recently enjoyed high demand. In addition, metal microforming has drawn increasing attention due to its net-forming capability, batch manufacturing potential, high product quality, and relatively low equipment cost. Micro-hydromechanical deep drawing (MHDD), a typical microforming method, has been developed to take advantage of hydraulic force. With reduced dimensions, the hydraulic pressure development changes; accordingly, the lubrication condition changes from the macroscale to the microscale. A Voronoi-based finite element model is proposed in this paper to consider the change in lubrication in MHDD according to open and closed lubricant pocket theory. Simulation results agree with experimental results concerning drawing force. Changes in friction significantly affect the drawing process and the drawn cups. Moreover, defined wrinkle indexes have been shown to have a complex relationship with hydraulic pressure. High hydraulic pressure can increase the maximum drawing ratio (drawn cup height), whereas the surface finish represented by the wear is not linearly dependent on the hydraulic pressure due to the wrinkles. 相似文献
996.
Ming CHEN Chengdong WANG Qinglong AN Weiwei MING 《Frontiers of Mechanical Engineering》2018,13(2):232-242
Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining. 相似文献
997.
Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts. 相似文献
998.
Reconfigurable manufacturing systems (RMSs), which possess the advantages of both dedicated serial lines and flexible manufacturing systems, were introduced in the mid-1990s to address the challenges initiated by globalization. The principal goal of an RMS is to enhance the responsiveness of manufacturing systems to unforeseen changes in product demand. RMSs are costeffective because they boost productivity, and increase the lifetime of the manufacturing system. Because of the many streams in which a product may be produced on an RMS, maintaining product precision in an RMS is a challenge. But the experience with RMS in the last 20 years indicates that product quality can be definitely maintained by inserting in-line inspection stations. In this paper, we formulate the design and operational principles for RMSs, and provide a state-of-the-art review of the design and operations methodologies of RMSs according to these principles. Finally, we propose future research directions, and deliberate on how recent intelligent manufacturing technologies may advance the design and operations of RMSs. 相似文献
999.
Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy rib-web components. However, the final quality of the transitional region may be deteriorated by uncontrollable factors, such as the manufacturing tolerance of the preforming billet, fluctuation of the stroke length, and friction factor. Thus, a dual-response surface method (RSM)-based robust optimization of the billet was proposed to address the uncontrollable factors in transitional region of the ILLF. Given that the die underfilling and folding defect are two key factors that influence the forming quality of the transitional region, minimizing the mean and standard deviation of the die underfilling rate and avoiding folding defect were defined as the objective function and constraint condition in robust optimization. Then, the cross array design was constructed, a dual-RSM model was established for the mean and standard deviation of the die underfilling rate by considering the size parameters of the billet and uncontrollable factors. Subsequently, an optimum solution was derived to achieve the robust optimization of the billet. A case study on robust optimization was conducted. Good results were attained for improving the die filling and avoiding folding defect, suggesting that the robust optimization of the billet in the transitional region of the ILLF was efficient and reliable. 相似文献
1000.
Jidong KANG James A. GIANETTO William R. TYSON 《Frontiers of Mechanical Engineering》2018,13(4):546-553
Fracture toughness measurement is an integral part of structural integrity assessment of pipelines. Traditionally, a single-edge-notched bend (SE(B)) specimen with a deep crack is recommended in many existing pipeline structural integrity assessment procedures. Such a test provides high constraint and therefore conservative fracture toughness results. However, for girth welds in service, defects are usually subjected to primarily tensile loading where the constraint is usually much lower than in the three-point bend case. Moreover, there is increasing use of strain-based design of pipelines that allows applied strains above yield. Low-constraint toughness tests represent more realistic loading conditions for girth weld defects, and the corresponding increased toughness can minimize unnecessary conservatism in assessments. In this review, we present recent developments in low-constraint fracture toughness testing, specifically using single-edge-notched tension specimens, SENT or SE(T). We focus our review on the test procedure development and automation, round-robin test results and some common concerns such as the effect of crack tip, crack size monitoring techniques, and testing at low temperatures. Examples are also given of the integration of fracture toughness data from SE(T) tests into structural integrity assessment. 相似文献