首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2155篇
  免费   63篇
  国内免费   5篇
电工技术   28篇
综合类   16篇
化学工业   593篇
金属工艺   33篇
机械仪表   43篇
建筑科学   160篇
矿业工程   5篇
能源动力   31篇
轻工业   200篇
水利工程   13篇
石油天然气   4篇
无线电   171篇
一般工业技术   402篇
冶金工业   136篇
原子能技术   18篇
自动化技术   370篇
  2024年   9篇
  2023年   34篇
  2022年   51篇
  2021年   77篇
  2020年   56篇
  2019年   61篇
  2018年   43篇
  2017年   44篇
  2016年   56篇
  2015年   48篇
  2014年   76篇
  2013年   105篇
  2012年   97篇
  2011年   163篇
  2010年   99篇
  2009年   115篇
  2008年   109篇
  2007年   90篇
  2006年   89篇
  2005年   76篇
  2004年   70篇
  2003年   58篇
  2002年   54篇
  2001年   49篇
  2000年   45篇
  1999年   47篇
  1998年   56篇
  1997年   40篇
  1996年   26篇
  1995年   25篇
  1994年   33篇
  1993年   21篇
  1992年   13篇
  1991年   29篇
  1990年   19篇
  1989年   18篇
  1988年   9篇
  1987年   8篇
  1986年   9篇
  1985年   9篇
  1984年   12篇
  1983年   12篇
  1982年   7篇
  1979年   5篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1975年   4篇
  1974年   6篇
  1973年   4篇
排序方式: 共有2223条查询结果,搜索用时 109 毫秒
51.
Ba0.5Sr0.5Co0.8Fe0.2O3‐δ tubes, capillaries, capillary modules, and asymmetric membranes were prepared and tested for oxygen permeation in a dead‐end vacuum operation mode at temperatures up to 850°C. The capillary module was built up by reactive air brazing using seven capillaries and a supply tube. Two machined discs were used as an end cap and as a connector plate. The oxygen permeation behaves according to Wagner at small driving forces, but significant negative deviations were observed for asymmetric membranes and single capillaries at higher ones. This is caused by pressure drops at the vacuum side for single capillaries. The highest oxygen flux was revealed for the capillary module with 175.5 mL(STP)/min at a low‐vacuum pressure of 0.042 bar at 850°C, but the asymmetric membrane showing a little bit higher flux at moderate vacuum pressures above 0.07 bar. © 2012 American Institute of Chemical Engineers AIChE J, 58: 3195–3202, 2012  相似文献   
52.
53.
Mid-infrared spectroscopy, in association with multivariate chemometric techniques, was employed for pattern recognition and the determination of the composition of waste frying oils (WFO); data are presented in terms of the percentage of soybean oil, palm oil and hydrogenated vegetable fat in frying oil blends. Principal component analysis (PCA) was performed using spectral data (3,000–600 cm−1) to discriminate between the samples containing 100% soybean oil, 100% palm oil, 100% hydrogenated vegetable fat groups and their blends. Additionally, the results indicated that partial least squares (PLS) models based on mid-infrared spectra were suitable as practical analytical methods for predicting the oil contents in WFO blends. PLS models were validated by a representative prediction set, and the root mean square errors of prediction (RMSEP) were 2.8, 4.7 and 5.5% for palm oil, soybean oil and hydrogenated vegetable fat, respectively. The proposed methodology can be very useful for the rapid and low cost determination of waste frying oil composition while also aiding in decisions regarding the management of oil pretreatment and production routes for biodiesel production.  相似文献   
54.
The polymer-to-ceramic transformation of a hafnium alkoxide-modified polysilazane was investigated via thermogravimetric analysis coupled with in situ mass spectrometry (TG/MS), nuclear magnetic resonance (MAS NMR) and transmission electron microscopy (TEM). The results indicate that the structural evolution of the polysilazane upon ceramization is strongly affected by the modification with hafnium alkoxide. Thus, the content of carbon in the ceramic backbone was relatively low, whereas a large amount of SiN4 sites and a segregated carbon phase was present in the sample. Furthermore, this study revealed the formation of a SiHfCNO amorphous single phase ceramic via pyrolysis of the polymer at 700 °C, whereas at higher pyrolysis temperatures precipitation of hafnia was observed, leading to an amorphous hafnia/silicon carbonitride ceramic nanocomposite. The precipitation of hafnia was shown to not rely on decomposition processes, but to be a result of rearrangement reactions occurring within the ceramic material.  相似文献   
55.
The pyrolised polysilazanes poly(hydridomethyl)silazane NCP 200 and poly(urea)silazane CERASET derived Si–C–N amorphous powders were used for preparation of micro/nano Si3N4/SiC composites by hot pressing. Y2O3–Al2O3 and Y2O3–Yb2O3 were used, as sintering aids. The resulting ceramic composites of all compositions were dense and polycrystalline with fine microstructure of average grain size <1 μm of both Si3N4 and SiC phases. The fine SiC nano-inclusions were identified within the Si3N4 micrograins. Phase composition of both composites consist of , β modifications of Si3N4 and SiC. High weight loss was observed during the hot pressing cycle, 12 and 19 wt.% for NCP 200 and CERASET precursors, respectively. The fracture toughness of both nanocomposites (NCP 2000 and CERASET derived) was not different. Indentation method measured values are from 5 to 6 MPa m1/2, with respect to the sintering additive system. Fracture toughness is slightly sensitive to the SiC content of the nanocomposite. Hardness increases with the content of SiC in the nanocomposite. The highest hardness was achieved for pyrolysed CERASET precursor with 2 wt.% Y2O3 and 6 wt.% Yb2O3, HV 23 GPa. This is a consequence of the highest SiC content as well as the chemical composition of additives.  相似文献   
56.
The chemical stability of an amorphous silicon carbonitride ceramic, having the composition 0.57SiC·0.43Si3N4·0.49C is studied as a function of nitrogen overpressure at 1873 K. The ceramic suffers a weight loss at p N2 < 3.5 bar (1 bar = 100 kPa), does not show a weight change from 3.5 to 11 bar, and gains weight above 11 bar. The structure of the ceramic changes with pressure: it is crystalline from 1 to 6 bar, amorphous at ∼10 bar, and is crystalline above ∼10 bar. The weight-loss transition, at 3.5 bar, is in excellent agreement with the prediction from thermodynamic analysis when the activities of carbon, SiC, and Si3N4 are set equal to those of the crystalline forms; this implies that the material crystallizes before decomposition. The amorphous to crystalline transition that occurs at ∼10 bar, and which is accompanied by weight gain, is likely to have taken place by a different mechanism. A nucleation and growth reaction with the atmospheric nitrogen is proposed as the likely mechanism. The supersaturation required to nucleate α-Si3N4 crystals is calculated to be 30 kJ/mol.  相似文献   
57.
58.
Directed evolution of the C25 farnesylgeranyl diphosphate synthase of Aeropyrum pernix (Fgs) was carried out by error-prone PCR with an in vivo color complementation screen utilizing carotenoid biosynthetic pathway enzymes. Screening yielded 12 evolved clones with C20 geranylgeranyl diphosphate synthase activity which were isolated and characterized in order to understand better the chain elongation mechanism of this enzyme. Analysis of these mutants revealed three different mechanisms of product chain length specificity. Two mutants (A64T and A64V) have a single mutation at the 8th amino acid upstream of a conserved first aspartate-rich motif (FARM), which is involved in the mechanism for chain elongation reaction of all prenyl diphosphate synthases. One mutant (A135T) carries a single mutation at the 7th amino acid upstream of another conserved region (141GQ142), which was recently found to be another important region controlling chain elongation of a type III C20 geranylgeranyl diphosphate synthase and Escherichia coli C15 farnesyl diphosphate synthase. Finally, one mutant carrying four mutations (V84I, H88R, I177 M and M191V) is of interest. Molecular modeling, site-directed mutagenesis and in vitro assays of this mutant suggest that product chain-length distribution can be also controlled by a structural change provoked by a cooperative interaction of amino acids.  相似文献   
59.
A deoxyadenosine triphosphate (dATP) analogue for DNA labeling was synthesized with the 1‐methylcyclopropene (1MCP) group at the 7‐position of 7‐deaza‐2′‐deoxyadenosine and applied for primer extension experiments. The real‐time kinetic data reveals that this 1MCP‐modified dATP analogue is incorporated into DNA much faster than that of the similarly 1MCP‐modified deoxyuridine triphosphate (dUTP) analogue. The postsynthetic fluorescent labeling of these oligonucleotides works efficiently according to PAGE analysis, and can be applied for immobilization of a functional antibody on a surface. Site‐specific labeling at two different positions in DNA was achieved and the bioorthogonality of the postsynthetic fluorescent labeling was demonstrated in living HeLa cells.  相似文献   
60.
Oxidation Kinetics of an Amorphous Silicon Carbonitride Ceramic   总被引:4,自引:0,他引:4  
The oxidation kinetics of amorphous silicon carbonitride (SiCN) was measured at 1350°C in ambient air. Two types of specimens were studied: one in the form of thin disks, the other as a powder. Both specimens contained open nanoscale porosity. The disk specimens exhibited weight gain that saturated exponentially with time, analogous to the oxidation behavior of reaction-bonded Si3N4. The saturation value of the weight gain increased linearly with specimen volume, suggesting the nanoscale pore surfaces oxidized uniformly throughout the specimen. This interpretation was confirmed by high-resolution electron microscopy and secondary ion mass spectroscopy. Experiments with the powders (having a particle size much larger than the scale of the nanopores) were also consistent with measurements of the disks. However, the powder specimens, having a high surface-to-volume ratio, continued to show measurable weight gain due to oxidation of the exterior surface. The wide range of values for the surface-to-volume ratio, which included all specimens, permitted a separation of the rate of oxidation of the free surface and the oxidation of the internal surfaces of the nanopores. Surface oxidation data were used to obtain the rate constant for parabolic growth of the oxidation scale. The values for the rate constant obtained for SiCN lay at the lower end of the spectrum of oxidation rates reported in the literature for several Si3N4 and SiC materials. Convergence in the behavior of SiCN and CVD-SiC is ascribed to the purity of both materials. Conversely, it is proposed that the high rates of oxidation of sintered polycrystalline silicon carbides and nitrides, as well as the high degree of variability of these rates, might be related to the impurities introduced by the sintering aids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号