首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   23篇
  国内免费   2篇
电工技术   5篇
化学工业   89篇
金属工艺   6篇
机械仪表   13篇
建筑科学   7篇
能源动力   46篇
轻工业   20篇
水利工程   5篇
石油天然气   6篇
无线电   52篇
一般工业技术   101篇
冶金工业   5篇
原子能技术   2篇
自动化技术   106篇
  2024年   1篇
  2023年   10篇
  2022年   24篇
  2021年   42篇
  2020年   25篇
  2019年   24篇
  2018年   35篇
  2017年   13篇
  2016年   11篇
  2015年   21篇
  2014年   25篇
  2013年   42篇
  2012年   34篇
  2011年   18篇
  2010年   14篇
  2009年   22篇
  2008年   17篇
  2007年   16篇
  2006年   13篇
  2005年   9篇
  2004年   5篇
  2003年   9篇
  2002年   9篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有463条查询结果,搜索用时 15 毫秒
91.
Wireless Personal Communications - Now-a-days the most common pretentious disease is the lung cancer, which has become more prevalent in the world that primarily infects the pulmonary nodules of...  相似文献   
92.
The introduction of multiple heterogeneous interfaces in a ceramic is an efficient way to increase its thermal resistance. Novel porous SiC–SiO2–Al2O3–TiO2 (SSAT) ceramics were fabricated to achieve multiple heterogeneous interfaces by sintering equal volumes of SiC, SiO2, Al2O3, and TiO2 compacted powders with polysiloxane as a bonding phase and carbon as a template at 600 °C in air. The porosity could be controlled between 66% and 74% by adjusting the amounts of polysiloxane and the carbon template. The lowest thermal conductivity (0.059 W/(m·K) at 74% porosity) obtained in this study is an order of magnitude lower than those (0.2–1.3 W/(m·K)) of porous monolithic SiC, SiO2, Al2O3, and TiO2 ceramics at an equivalent porosity. The typical specific compressive strength value of the porous SSAT ceramics at 74% porosity was 3.2 MPa cm3/g.  相似文献   
93.
Identification of feasible region of operations in multivariate processes is a problem of interest in several fields. This is particularly challenging when the process model is black-box in nature and/or is computationally expensive, as analytical solutions are not available and the number of possible model evaluations is limited. An efficient methodology is required to identify samples where the model is evaluated for developing a computationally efficient surrogate model. In this work, an artificial neural network based surrogate model is proposed which is integrated with a statistical-based approach (Jack-knifing) to estimate the variance of the surrogate model prediction. This allows implementation of an adaptive sampling approach where new samples are identified close to the feasible region boundary or in regions of high prediction uncertainty. The proposed approach performs better than a previously published kriging based method for different dimensionality case studies.  相似文献   
94.
The present study attempts quantitative determination of changes in the morphological surface features viz. fractal dimension, lower and upper cut off length scale through Power Spectral Density analysis prior to and after irradiation of 100 KeV Ar+ ion beam at incidence angles of 0°, 40° and 60° on ZnO thin films. All the unirradiated and irradiated samples are subjected to photoelectrochemical characterization and a correlation between photoelectrochemical performance and morphological parameters is established. Sample irradiated at 40° angle at the fluence of 5 × 1016 ions/cm2 is found to possess maximum fractal dimension of 2.72, lower and upper cut off length scale of 3.16 nm and 63.00 nm respectively. This sample exhibits maximum photocurrent density of 3.19 mA/cm2 and applied bias photon-to-current efficiency of 1.12% at 1.23 V/RHE. Hydrogen gas collected for duration of 1 h for the same sample was ~4.83 mLcm?2.  相似文献   
95.
96.
Rechargeable sodium-ion batteries (SIBs) are emerging as a viable alternative to lithium-ion battery (LIB) technology, as their raw materials are economical, geographically abundant (unlike lithium), and less toxic. The matured LIB technology contributes significantly to digital civilization, from mobile electronic devices to zero electric-vehicle emissions. However, with the increasing reliance on renewable energy sources and the anticipated integration of high-energy-density batteries into the grid, concerns have arisen regarding the sustainability of lithium due to its limited availability and consequent price escalations. In this context, SIBs have gained attention as a potential energy storage alternative, benefiting from the abundance of sodium and sharing electrochemical characteristics similar to LIBs. Furthermore, high-entropy chemistry has emerged as a new paradigm, promising to enhance energy density and accelerate advancements in battery technology to meet the growing energy demands. This review uncovers the fundamentals, current progress, and the views on the future of SIB technologies, with a discussion focused on the design of novel materials. The crucial factors, such as morphology, crystal defects, and doping, that can tune electrochemistry, which should inspire young researchers in battery technology to identify and work on challenging research problems, are also reviewed.  相似文献   
97.
Babbar  Rohit  Schölkopf  Bernhard 《Machine Learning》2019,108(8-9):1329-1351
Machine Learning - The goal in extreme multi-label classification (XMC) is to learn a classifier which can assign a small subset of relevant labels to an instance from an extremely large set of...  相似文献   
98.
Multimedia Tools and Applications - Visualizations help decipher latent patterns in music and garner a deep understanding of a song’s characteristics. This paper offers a critical analysis of...  相似文献   
99.
In the present work, we have designed and synthesized two carbazole and phenothiazine donor moieties based metal-free organic sensitizers and their codes are WCBZ2 and WPTZ2 respectively. These sensitizers have been used for photocatalytic hydrogen (H2) evaluation application. The sensitizers exhibit good light absorption capability and electrochemical properties as well. For increasing water splitting capacity, incorporate platinum salt on TiO2 semiconductor photoanode was performed and compared hydrogen evolution with pure TiO2 photoanode. We have also studied the influence of the sensitizer's concentration and the effect of pH of the medium was explored. Using a theoretical measurement optimized both the synthesized dimer dyes structure geometry and the calculated their HOMO-LUMO energy level. Here also reported optimized pH and concentration of sensitizers in the reaction medium and found that the high hydrogen generation efficiency from water splitting is 138.3 μmol (348 TONs) by the WPTZ2 dye.  相似文献   
100.
Wireless Personal Communications - The recent evolution in wireless technologies has brought a new notion called Internet of Things (IoT), in which all objects can communicate to each other....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号