首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   24篇
  国内免费   2篇
电工技术   5篇
化学工业   89篇
金属工艺   6篇
机械仪表   13篇
建筑科学   7篇
能源动力   46篇
轻工业   20篇
水利工程   5篇
石油天然气   6篇
无线电   52篇
一般工业技术   101篇
冶金工业   5篇
原子能技术   2篇
自动化技术   105篇
  2024年   1篇
  2023年   10篇
  2022年   24篇
  2021年   42篇
  2020年   25篇
  2019年   24篇
  2018年   35篇
  2017年   13篇
  2016年   11篇
  2015年   21篇
  2014年   25篇
  2013年   42篇
  2012年   34篇
  2011年   18篇
  2010年   13篇
  2009年   22篇
  2008年   17篇
  2007年   16篇
  2006年   13篇
  2005年   9篇
  2004年   5篇
  2003年   9篇
  2002年   9篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有462条查询结果,搜索用时 299 毫秒
61.
Creating defect tolerant lead‐free halide perovskites is the major challenge for development of high‐performance photovoltaics with nontoxic absorbers. Few compounds of Sn, Sb, or Bi possess ns2 electronic configuration similar to lead, but their poor photovoltaic performances inspire us to evaluate other factors influencing defect tolerance properties. The effect of heavy metal cation (Bi) transmutation and ionic migration on the defects and carrier properties in a 2D layered perovskite (NH4)3(Sb(1?x)Bix)2I9 system is investigated. It is shown, for the first time, the possibility of engineering the carriers in halide perovskites via metal cation transmutation to successfully form intrinsic p‐ and n‐type materials. It is also shown that this material possesses a direct–indirect bandgap enabling high absorption coefficient, extended carrier lifetimes >100 ns, and low trap densities similar to lead halide perovskites. This study also demonstrates the possibility of electrical poling to induce switchable photovoltaic effect without additional electron and hole transport layers.  相似文献   
62.
Efficient modal decomposition of high-dimensional turbulent flow data is an important first step for data reduction, analysis, and low-dimensional predictive modeling. The conventional modal decomposition techniques, such as proper orthogonal and dynamic mode decompositions, aim to represent the system response using spatially global basis vectors that span a broad spatial domain. A significant challenge facing approaches based on global domain decomposition is the rapid increase in both the amount of training data and the number of modes that must be retained for an accurate representation of convection dominated turbulent flows. An alternative generalized finite element (GFEM) based approach is explored for efficient representation of high-dimensional fluid flow data. Here, the standard finite element interpolation method is enriched with numerical functions that are learned from a small amount of high-fidelity training data over spatially localized subdomains. The GFEM approach is demonstrated on a 3D flow past a cylinder at Reynolds number of 100 000 and flows inside a 2D lid-driven cavity over a range of Reynolds numbers. Compared with a global proper orthogonal decomposition, the GFEM-based approach increases efficiency in reconstructing the datasets while also substantially reducing the amounts of training data.  相似文献   
63.
Fault detection of the photovoltaic (PV) grid is necessary to detect serious output power reduction to avoid PV modules’ damage. To identify the fault of the PV arrays, there is a necessity to implement an automatic system. In this IoT and LabVIEW-based automatic fault detection of 3 × 3 solar array, a PV system is proposed to control and monitor Internet connectivity remotely. Hardware component to automatically reconfigure the solar PV array from the series-parallel (SP) to the complete cross-linked array underneath partial shading conditions (PSC) is centered on the Atmega328 system to achieve maximum power. In the LabVIEW environment, an automated monitoring system is developed. The automatic monitoring system assesses the voltage drop losses present in the DC side of the PV generator and generates a decimal weighted value depending on the defective solar panels and transmits this value to the remote station through an RF modem, and provides an indicator of the faulty solar panel over the built-in Interface LabVIEW. The managing of this GUI indicator helps the monitoring system to generate a panel alert for damaged panels in the PV system. Node MCU in the receiver section enables transmission of the fault status of PV arrays via Internet connectivity. The IoT-based Blynk app is employed for visualizing the fault status of the 3 × 3 PV array. The dashboard of Blynk visualizes every array with the status.  相似文献   
64.
Multimedia Tools and Applications - Biometric authentication can establish a person’s identity from their exclusive features. In general, biometric authentication can vulnerable to spoofing...  相似文献   
65.
Journal of Signal Processing Systems - Coarse Grained Reconfigurable Arrays (CGRAs) are emerging as energy efficient accelerators providing a high grade of flexibility in both academia and...  相似文献   
66.
Wireless Personal Communications - Biometric traits are frequently used by security agencies for automatic recognition of a person. There are numerous biometric traits used for person...  相似文献   
67.
Wireless Networks - With the advancement of communication and sensor technologies, it has become possible to develop low-cost circuitry to sense and transmit the state of surroundings. Wireless...  相似文献   
68.
In this study, an in situ imaging system has been analysed to characterize the crystal size, the shape and the number of particles during a continuous crystallization process in a Continuous Oscillatory Baffled Crystallizer (COBC). Two image analysis approaches were examined for particle characterization in the suspension containing both small nuclei and larger grown crystals (nonspherical and irregular in shape). The pattern matching approach, in which the particles are approximated to be spherical, did result in an overestimation of the size. Alternatively, a segmentation‐based algorithm resulted in reliable crystal size and shape characteristics. The laser diffraction analysis in comparison to the image analysis overestimated the particle sizes due to the agglomeration of particles upon filtration and drying. The trend in the particle counts during the start of crystallization process, including nucleation, determined by the image analysis probe was comparable with the one measured by FBRM, highlighting the potential of in situ imaging for process monitoring. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2450–2461, 2018  相似文献   
69.
How the choice of elastic normal contact force model affects predictions from discrete element method simulations of spherocylindrical particles is investigated in this article. Three force models were investigated: (1) a Hertzian force model (HFM) which assumes a circular contact area; (2) a linear force model (LFM) with a constant stiffness; and (3) a modified HFM (MFM) that accounts for various contact areas and contact transitions. With the MFM, transitions between contact area types must be accounted for otherwise discontinuities in the contact force can occur. It is found that simple force models (HFM, LFM) can be substituted for more accurate force models if only force data and bulk properties are of interest. However, if more detailed contact information, such as contact area, contact overlap, contact duration, or collision frequency, are needed, for example, in population balance models and transient liquid bridge modeling, then a more accurate force model should be used. © 2018 American Institute of Chemical Engineers AIChE J, 64: 1986–2001, 2018  相似文献   
70.
Microfluidic platform for controlled synthesis of polymeric nanoparticles   总被引:2,自引:0,他引:2  
A central challenge in the development of drug-encapsulated polymeric nanoparticles is the inability to control the mixing processes required for their synthesis resulting in variable nanoparticle physicochemical properties. Nanoparticles may be developed by mixing and nanoprecipitation of polymers and drugs dissolved in organic solvents with nonsolvents. We used rapid and tunable mixing through hydrodynamic flow focusing in microfluidic channels to control nanoprecipitation of poly(lactic- co-glycolic acid)- b-poly(ethylene glycol) diblock copolymers as a model polymeric biomaterial for drug delivery. We demonstrate that by varying (1) flow rates, (2) polymer composition, and (3) polymer concentration we can optimize the size, improve polydispersity, and control drug loading and release of the resulting nanoparticles. This work suggests that microfluidics may find applications for the development and optimization of polymeric nanoparticles in the newly emerging field of nanomedicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号