首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1329篇
  免费   0篇
  国内免费   2篇
电工技术   1篇
化学工业   3篇
金属工艺   2篇
机械仪表   2篇
建筑科学   2篇
轻工业   1篇
一般工业技术   6篇
冶金工业   1311篇
自动化技术   3篇
  2020年   1篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  1999年   30篇
  1998年   362篇
  1997年   230篇
  1996年   140篇
  1995年   75篇
  1994年   82篇
  1993年   77篇
  1992年   12篇
  1991年   23篇
  1990年   18篇
  1989年   24篇
  1988年   16篇
  1987年   31篇
  1986年   23篇
  1985年   12篇
  1983年   3篇
  1982年   14篇
  1981年   8篇
  1980年   16篇
  1978年   4篇
  1977年   38篇
  1976年   78篇
  1975年   3篇
  1955年   1篇
排序方式: 共有1331条查询结果,搜索用时 0 毫秒
71.
72.
73.
74.
75.
76.
77.
Tinnitus is the perceived sensation of sound in the absence of acoustic stimulation. Individuals who suffer from it are commonly between the ages of 40 and 80 years. Tinnitus is often classified as objective or subjective, yet the pathophysiologic cause is still unknown. Subjective tinnitus is largely identified with hearing loss. Management of tinnitus is based on an individual approach; there is no single treatment or regimen for it.  相似文献   
78.
79.
Caspases (ICE/ Ced3 proteases) are a closely related family of cysteine proteases that play a key role in apoptotic cell death. We examined the role of caspases in DNA damage and cell death in response to the mitochondrial inhibitor, antimycin A. LLC-PK1 cells contain caspase activity that was markedly inhibited by cleavage site-based peptide inhibitors of caspases but not by inhibitors of serine, cysteine, aspartate or metalloproteinases. The caspase activity increased within five minutes of exposure to antimycin A, preceding any evidence of DNA damage and cell death. The specific caspase inhibitors. Ac-Tyr-Val-Ala-Asp-aldehyde (inhibitor I) and Ac-Asp-Glu-Val-Asp-aldehyde (inhibitor II) prevented, in a dose dependent manner, antimycin A-induced DNA strand breaks as determined by DNA unwinding assay (residual double stranded DNA in control, 94 +/- 2%; antimycin A alone, 48 +/- 3%; antimycin A + inhibitor I at 50 microM, 93 +/- 2%; antimycin A + inhibitor II at 50 microM, 89 +/- 5%; N = 3 to 4, P < 0.001). These inhibitors also prevented antimycin A-induced DNA fragmentation as determined by agarose gel electrophoresis and by in situ labeling of cell nuclei by the terminal deoxynucleotidyl transferase (TdT) nick end labeling (TUNEL) method. The caspase inhibitors markedly prevented antimycin A-induced cell death in a dose-dependent manner as measured by trypan blue exclusion (control 6 +/- 1%, antimycin A alone 40 +/- 1%, antimycin A + inhibitor I at 50 microM 16 +/- 1%, antimycin A + inhibitor II at 50 microM 16 +/- 1%; N = 4 to 7, P < 0.001). These data indicate that the caspase family of enzymes play an important role in DNA damage and cell death in response to the mitochondrial inhibitor, antimycin A.  相似文献   
80.
Estrogenic activity of certain xenobiotics is an established mechanism of toxicity that can impair reproductive function in adults of either sex, lead to irreversible abnormalities when administered during development, or cause cancer. The concern has been raised that exposure to ambient levels of estrogenic xenobiotics may be having widespread adverse effects on reproductive health of humans and wildlife. The purpose of this review is to evaluate (a) the nature of the evidence supporting this concern, and (b) the adequacy of toxicity screening to detect, and risk assessment procedures to establish safe levels for, agents acting by this mechanism. Observations such as adverse developmental effects after maternal exposure to therapeutic levels of the potent estrogen diethylstilbestrol or male fertility problems after exposure to high levels of the weak estrogen chlordecone clearly demonstrate that estrogenicity is active as a toxic mechanism in humans. High level exposures to estrogenic compounds have also been shown to affect specific wildlife populations. However, there is little direct evidence to indicate that exposures to ambient levels of estrogenic xenobiotics are affecting reproductive health. Reports of historical trends showing decreasing reproductive capacity (e.g., decreased sperm production over the last 50 years) are either inconsistent with other data or have significant methodologic inadequacies that hinder interpretation. More reliable historical trend data show an increase in breast cancer rate, but the most comprehensive epidemiology study to data failed to show an association between exposure to persistent, estrogenic organochlorine compounds and breast cancer. Clearly, more work needs to be done to characterize historical trends in humans and background incidence of abnormalities in wildlife populations, and to test hypotheses about ambient exposure to environmental contaminants and toxic effects, before conclusions can be reached about the extent or possible causes of adverse effects. It is unlikely that current lab animal testing protocols are failing to detect agents with estrogenic activity, as a wide array of estrogen-responsive endpoints are measured in standard testing batteries. Routine testing for aquatic and wildlife toxicity is more limited in this respect, and work should be done to assess the validity of applying mammalian toxicology data for submammalian hazard identification. Current risk assessment methods appear to be valid for estrogenic agents, although the database for evaluating this is limited. In conclusion, estrogenicity is an important mechanism of reproductive and developmental toxicity; however, there is little evidence at this point that low level exposures constitute a human or ecologic health risk. Given the potential consequences of an undetected risk, more research is needed to investigate associations between exposures and effects, both in people and animals, and a number of research questions are identified herein. The lack of evidence demonstrating widespread xenobiotic-induced estrogenic risk suggests that far-reaching policy decisions can await these research findings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号