首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580933篇
  免费   6821篇
  国内免费   1527篇
电工技术   10497篇
综合类   404篇
化学工业   88120篇
金属工艺   27200篇
机械仪表   20069篇
建筑科学   11700篇
矿业工程   4974篇
能源动力   14306篇
轻工业   35881篇
水利工程   7278篇
石油天然气   16916篇
武器工业   36篇
无线电   62739篇
一般工业技术   127547篇
冶金工业   98085篇
原子能技术   16430篇
自动化技术   47099篇
  2021年   5516篇
  2020年   4272篇
  2019年   5425篇
  2018年   9984篇
  2017年   10207篇
  2016年   10901篇
  2015年   6358篇
  2014年   10628篇
  2013年   26893篇
  2012年   16379篇
  2011年   21526篇
  2010年   17092篇
  2009年   19250篇
  2008年   19692篇
  2007年   19276篇
  2006年   16744篇
  2005年   16482篇
  2004年   15260篇
  2003年   14747篇
  2002年   13466篇
  2001年   13221篇
  2000年   12602篇
  1999年   12583篇
  1998年   29746篇
  1997年   21096篇
  1996年   16108篇
  1995年   12225篇
  1994年   10904篇
  1993年   11031篇
  1992年   8365篇
  1991年   8042篇
  1990年   8128篇
  1989年   7685篇
  1988年   7365篇
  1987年   6729篇
  1986年   6520篇
  1985年   7223篇
  1984年   6781篇
  1983年   6241篇
  1982年   5788篇
  1981年   5905篇
  1980年   5645篇
  1979年   5769篇
  1978年   5878篇
  1977年   6354篇
  1976年   7791篇
  1975年   5205篇
  1974年   5116篇
  1973年   5216篇
  1972年   4546篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
Application of brown titanium dioxide (TiO2-x) and its modified composite forms in the photocatalytic decomposition of organic pollutants in the environment is a promising way to provide solutions for environmental redemption. Herein, we report the synthesis of effective and stable TiO2-x nanoparticles with g-C3N4, RGO, and multiwalled carbon nanotubes (CNTs) using a simple hydrothermal method. Among all the as-synthesized samples, excellent photocatalytic degradation activity was observed for RGO-TiO2-x nanocomposite with high rate constants of 0.075 min?1, 0.083 min?1 and 0.093 min?1 for methylene blue, rhodamine-B, and rosebengal dyes under UV–Visible light irradiation, respectively. The altered bandgap (1.8 eV) and the large surface area of RGO-TiO2-x nanocomposite impacts on both absorption of visible light and efficiency of photogenerated charge electron (e?)/hole (h+) pair separation. This resulted in enhanced photocatalytic property of carbon-based TiO2-x nanocomposites. A systematic study on the influence of different carbon nanostructures on the photocatalytic activity of brown TiO2-x is carried out.  相似文献   
202.
Measurement Techniques - A comparative analysis of the results of estimation of measurement uncertainty is conducted. The results are obtained by a method described in the Handbook on the...  相似文献   
203.
Mobile Networks and Applications - Public cloud system offers Infrastructure-as-a-Service (IaaS) to deliver the computational resources on demand. Resource requirements of a cloud environment are...  相似文献   
204.
205.
206.
The use of hydrogen as a fuel is increasing exponentially, and the most economical way to store and transport hydrogen for fuel use is as a high-pressure gas. Polymers are widely used for hydrogen distribution and storage systems because they are chemically inert towards hydrogen. However, when exposed to high-pressure hydrogen, some hydrogen diffuses through polymers and occupies the preexisting cavities inside the material. Upon depressurization, the hydrogen trapped inside polymer cavities can cause blistering or cracking by expanding these cavities. A continuum mechanics–based deformation model was deployed to predict the stress distribution and damage propagation while the polymer undergoes depressurization after high-pressure hydrogen exposure. The effects of cavity size, cavity location, and pressure inside the cavity on damage initiation and evolution inside the polymer were studied. The stress and damage evolution in the presence of multiple cavities was also studied, because interaction among cavities alters the damage and stress field. It was found that all these factors significantly change the stress state in the polymer, resulting in different paths for damage propagation. The effect of adding carbon black filler particles and plasticizer on the damage was also studied. It was found that damage tolerance of the polymer increases drastically with the addition of carbon black fillers, but decreases with the addition of the plasticizer.  相似文献   
207.
Russian Microelectronics - The recently developed nanomaterials and their production technologies as intellectual property objects (IPOs) are considered. The role of the informational-analytical...  相似文献   
208.
Strength of Materials - Creep constitutive equations have been derived for the materials that exhibit the properties of orthotropy (transversal isotropy) and transient creep under cyclic loading. A...  相似文献   
209.
Chorismate and isochorismate constitute branch-point intermediates in the biosynthesis of many aromatic metabolites in microorganisms and plants. To obtain unnatural compounds, we modified the route to menaquinone in Escherichia coli. We propose a model for the binding of isochorismate to the active site of MenD ((1R,2S, 5S,6S)-2-succinyl-5-enolpyruvyl-6-hydroxycyclohex-3-ene-1-carboxylate (SEPHCHC) synthase) that explains the outcome of the native reaction with α-ketoglutarate. We have rationally designed variants of MenD for the conversion of several isochorismate analogues. The double-variant Asn117Arg–Leu478Thr preferentially converts (5S,6S)-5,6-dihydroxycyclohexa-1,3-diene-1-carboxylate (2,3-trans-CHD), the hydrolysis product of isochorismate, with a >70-fold higher ratio than that for the wild type. The single-variant Arg107Ile uses (5S,6S)-6-amino-5-hydroxycyclohexa-1,3-diene-1-carboxylate (2,3-trans-CHA) as substrate with >6-fold conversion compared to wild-type MenD. The novel compounds have been made accessible in vivo (up to 5.3 g L−1). Unexpectedly, as the identified residues such as Arg107 are highly conserved (>94 %), some of the designed variations can be found in wild-type SEPHCHC synthases from other bacteria (Arg107Lys, 0.3 %). This raises the question for the possible natural occurrence of as yet unexplored branches of the shikimate pathway.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号