首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1693068篇
  免费   33630篇
  国内免费   9757篇
电工技术   38615篇
技术理论   6篇
综合类   10836篇
化学工业   288544篇
金属工艺   69753篇
机械仪表   50943篇
建筑科学   53717篇
矿业工程   14050篇
能源动力   52599篇
轻工业   130156篇
水利工程   17753篇
石油天然气   42792篇
武器工业   595篇
无线电   206944篇
一般工业技术   310801篇
冶金工业   230002篇
原子能技术   35059篇
自动化技术   183290篇
  2021年   18538篇
  2020年   14171篇
  2019年   16712篇
  2018年   20180篇
  2017年   19823篇
  2016年   24619篇
  2015年   20281篇
  2014年   32316篇
  2013年   92325篇
  2012年   42724篇
  2011年   57494篇
  2010年   48960篇
  2009年   56453篇
  2008年   52288篇
  2007年   50047篇
  2006年   50686篇
  2005年   45644篇
  2004年   46073篇
  2003年   45610篇
  2002年   44053篇
  2001年   41377篇
  2000年   39412篇
  1999年   40079篇
  1998年   67093篇
  1997年   52597篇
  1996年   44530篇
  1995年   36458篇
  1994年   33378篇
  1993年   32956篇
  1992年   27619篇
  1991年   24982篇
  1990年   25014篇
  1989年   23984篇
  1988年   22629篇
  1987年   20627篇
  1986年   20081篇
  1985年   23350篇
  1984年   22978篇
  1983年   20910篇
  1982年   19728篇
  1981年   19888篇
  1980年   18531篇
  1979年   18912篇
  1978年   18153篇
  1977年   18877篇
  1976年   21480篇
  1975年   16333篇
  1974年   15763篇
  1973年   15888篇
  1972年   13306篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism – yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.  相似文献   
962.
The present study focuses on the sintering of silicon carbide-based ceramics (SiC) by liquid phase sintering (LPS) followed by characterization of the produced ceramics. AlN/Re2O3 mixtures were used as additives in the LPS process. In the first step, the LPS-SiC materials were produced in a graphite resistance furnace in the form of discs at different temperatures. The conditions with the best results regarding real density and relative density were taken as reference for sintering in the form of prismatic bars. In the second step, these samples were evaluated regarding fracture toughness (KIC), by the Single Edge V Notch Beam – SEVNB – method, and flexural strength. KIC behavior was evaluated according to the depth and curvature radius of the notches. Reliable KIC values were presented when the ceramic displayed a small curvature radius at the notch tip. When the radius was large, it did not maintain the square root singularity of the notch tip. Tests were carried out to determine KIC values in atmospheric air and water. KIC results were lower in water than air, with a decrease ranging between 2.56% and 11.26%. The observations indicated a direct grain size correlation between KIC values and fracture strength of the SiC ceramics.  相似文献   
963.
This study aims to evaluate the tribological behaviour of 3Y-TZP/Ta (20 vol%) ceramic-metal composites and 3Y-TZP monolithic ceramic prepared by spark plasma sintering (SPS) against ultrahigh molecular weight polyethylene (UHMWPE). According to the results of pin (UHMWPE)-on-flat wear test under dry conditions, the UHMWPE – 3Y-TZP/Ta system exhibited lower volume loss and friction coefficient than the UHMWPE – monolithic ceramic combination due to the presence of an autolubricating layer that provides sufficient lubrication for reducing the friction. Owing to the lubrication of the liquid media, under wet conditions obtained using simulated body fluid (SBF), similar behaviour is observed in both cases. Additionally, the ceramic and biocomposite materials were subjected to a low temperature degradation (LTD) process (often referred to as “ageing”) to evaluate the changes in the tribological behaviour after this treatment. In this particular case, the wear properties of the UHMWPE-biocomposite system were found to be less influenced by ageing in contrast to the case of the UHMWPE-zirconia monolithic material. In addition to their exceptional mechanical performance, 3Y-TZP/Ta composites also showed high resistance to low temperature degradation and good tribological properties, making them promising candidates for biomedical applications, especially for orthopaedic implants.  相似文献   
964.
965.
966.
967.
Tissue engineered grafts show great potential as regenerative implants for diseased or injured tissues within the human body. However, these grafts suffer from poor nutrient perfusion and waste transport, thus decreasing their viability post-transplantation. Graft vascularization is therefore a major area of focus within tissue engineering because biologically relevant conduits for nutrient and oxygen perfusion can improve viability post-implantation. Many researchers used microphysiological systems as testing platforms for potential grafts owing to an ability to integrate vascular networks as well as biological characteristics such as fluid perfusion, 3D architecture, compartmentalization of tissue-specific materials, and biophysical and biochemical cues. Although many methods of vascularizing these systems exist, microvascular self-assembly has great potential for bench-to-clinic translation as it relies on naturally occurring physiological events. In this review, the past decade of literature is highlighted, and the most important and tunable components yielding a self-assembled vascular network on chip are critically discussed: endothelial cell source, tissue-specific supporting cells, biomaterial scaffolds, biochemical cues, and biophysical forces. This paper discusses the bioengineered systems of angiogenesis, vasculogenesis, and lymphangiogenesis and includes a brief overview of multicellular systems. It concludes with future avenues of research to guide the next generation of vascularized microfluidic models.  相似文献   
968.
Proton-detected 100 kHz magic-angle-spinning (MAS) solid-state NMR is an emerging analysis method for proteins with only hundreds of microgram quantities, and thus allows structural investigation of eukaryotic membrane proteins. This is the case for the cell-free synthesized hepatitis C virus (HCV) nonstructural membrane protein 4B (NS4B). We demonstrate NS4B sample optimization using fast reconstitution schemes that enable lipid-environment screening directly by NMR. 2D spectra and relaxation properties guide the choice of the best sample preparation to record 2D 1H-detected 1H,15N and 3D 1H,13C,15N correlation experiments with linewidths and sensitivity suitable to initiate sequential assignments. Amino-acid-selectively labeled NS4B can be readily obtained using cell-free synthesis, opening the door to combinatorial labeling approaches which should enable structural studies.  相似文献   
969.
The present work focuses on the fabrication of βTCP (β-tricalcium phosphate) and HA/βTCP (hydroxyapatite/β-tricalcium phosphate) composite coatings by plasma spraying. The starting powders were produced via solid-state method using 2 wt% MgO to stabilize βTCP phase. The synthesized powders were preliminarily granulated to be used by the plasma spray process. Coatings obtained on titanium substrates are uniform and well adherent but due to the high temperature and cooling rate typical for plasma spraying process, βTCP phase is almost totally transformed into the α allotrope. Thermal treatment at 800 °C allows the reconversion of the phase αTCP→ βTCP. It is therefore possible to produce coatings with tuneable dissolution properties by selecting the proper initial powder mixture and the specific thermal treatment.  相似文献   
970.
Spherical LiNi1/3Co1/3Mn1/3O2 cathode particles were resynthesized by a carbonate co-precipitation method using spent lithium-ion batteries (LIBs) as a raw material. The physical characteristics of the Ni1/3Co1/3Mn1/3CO3 precursor, the (Ni1/3Co1/3Mn1/3)3O4 intermediate, and the regenerated LiNi1/3Co1/3Mn1/3O2 cathode material were investigated by laser particle-size analysis, scanning electron microscopy–energy-dispersive spectroscopy (SEM-EDS), thermogravimetry–differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), inductively coupled plasma–atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the regenerated LiNi1/3Co1/3Mn1/3O2 was studied by continuous charge–discharge cycling and cyclic voltammetry. The results indicate that the regenerated Ni1/3Co1/3Mn1/3CO3 precursor comprises uniform spherical particles with a narrow particle-size distribution. The regenerated LiNi1/3Co1/3Mn1/3O2 comprises spherical particles similar to those of the Ni1/3Co1/3Mn1/3CO3 precursor, but with a narrower particle-size distribution. Moreover, it has a well-ordered layered structure and a low degree of cation mixing. The regenerated LiNi1/3Co1/3Mn1/3O2 shows an initial discharge capacity of 163.5 mA h g?1 at 0.1 C, between 2.7 and 4.3 V; the discharge capacity at 1 C is 135.1 mA h g?1, and the capacity retention ratio is 94.1% after 50 cycles. Even at the high rate of 5 C, LiNi1/3Co1/3Mn1/3O2 delivers the high capacity of 112.6 mA h g?1. These results demonstrate that the electrochemical performance of the regenerated LiNi1/3Co1/3Mn1/3O2 is comparable to that of a cathode synthesized from fresh materials by carbonate co-precipitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号