首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   5篇
化学工业   34篇
金属工艺   1篇
机械仪表   6篇
能源动力   3篇
轻工业   6篇
水利工程   1篇
无线电   3篇
一般工业技术   26篇
原子能技术   3篇
自动化技术   13篇
  2023年   5篇
  2022年   14篇
  2021年   14篇
  2020年   8篇
  2019年   7篇
  2018年   3篇
  2017年   6篇
  2016年   4篇
  2015年   1篇
  2014年   6篇
  2013年   5篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   2篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
71.
Graphene, a single atom thick sheet is considered a key candidate for the future nanotechnology, due to its unique extraordinary properties. Researchers are trying to synthesize bulk graphene via chemical route from graphene oxide precursor. In the present work, we investigated a safe and efficient way of monolayer graphene oxide synthesis. To get a high degree of oxidation, we sonicated the graphite flakes before oxidation. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results confirmed graphene oxide formation and high degree of oxidation. Raman spectroscopy and atomic force microscopy (AFM) results revealed a monolayer of graphene oxide (GO) flakes. The sheet like morphology of the GO flakes was further confirmed by scanning electron microscopy (SEM). The Hall effect measurements were performed on the GO film on a silica substrate to investigate its electrical properties. The results obtained, revealed that the GO film is perfectly insulating, having electrical resistivity up to 8.4 × 108 (Ω·cm) at room temperature.  相似文献   
72.
A comparative study of fuel burnup and buildup of actinides and fission products for potential LEU fuels (UO2 and U–9Mo) with existing HEU fuel (UAl4–Al, 90% enriched) for a typical Miniature Neutron Source Reactor (MNSR) has been carried-out using the WIMSD4 computer program. For the complete burnup, the UAl4–Al, UO2 and U–9Mo based systems show a total consumption of 6.89, 6.83 and 6.88 g of 235U, respectively. Relative to 0.042 g 239Pu produced in case of UAl4–Al HEU core, UO2 and U–9Mo based cores have been found to yield 0.793 and 0.799 g, respectively, indicating much larger values of conversion ratios and correspondingly high values of fuel utilization factor. The end-of-cycle activity of the HEU core has been found 2284 Ci which agrees well with value found by Khattab where as for UO2 based and U–9Mo based LEU cores show 1.8 and 4.8% increase with values 2326 and 2394 Ci, respectively.  相似文献   
73.
A two-group, three-dimensional diffusion theory based methodology coupled with one-dimensional single-phase heat transfer calculations has been developed for the transient analysis of typical material test reactors (MTRs). This methodology has been implemented in a FORTRAN based computer program MTRAP3. It uses the CITATION computer program as a subroutine for static neutronic calculations while the group constant generation is performed by employing the WIMS-D/4 code. The MTRAP3 program uses Cranck–Nicolson (CN) based numerical scheme for solution of time dependant neutron diffusion calculations while time-implicit strategy is employed for detailed heat-transfer calculations. The CN-scheme has been found to remain stable for much larger time steps (Δt ∼ 10−5 s) as compared with the time-explicit scheme which is limited to very small time steps only (Δt ∼ 10−10 s). For step as well as for ramp reactivity induced transients, the predicted values of core integrated reactor power and core average temperatures has been found to agree well with the corresponding values found by using the PARET computer program. The assembly-wise power profile as found by the MTRAP3 program has been found consistent with the corresponding experimental measurements.  相似文献   
74.
We report the fabrication of heterostructure white light–emitting diode (LED) comprised of n-ZnO nanotubes (NTs) aqueous chemically synthesized on p-GaN substrate. Room temperature electroluminescence (EL) of the LED demonstrates strong broadband white emission spectrum consisting of predominating peak centred at 560 nm and relatively weak violet–blue emission peak at 450 nm under forward bias. The broadband EL emission covering the whole visible spectrum has been attributed to the large surface area and high surface states of ZnO NTs produced during the etching process. In addition, comparison of the EL emission colour quality shows that ZnO nanotubes have much better quality than that of the ZnO nanorods. The colour-rendering index of the white light obtained from the nanotubes was 87, while the nanorods-based LED emit yellowish colour.  相似文献   
75.
In this study, the synthesis of urea-formaldehyde/polyurethane (UF/PU) microcapsules containing epoxy resin for self-healing and anti-corrosion coatings with good stability has been reported. Spherical microcapsules were prepared with a diameter of about 50–720 μm and a shell thickness of 0.6–0.7 μm via in situ polymerization in an oil-in-water emulsion using 2,4-toluene diisocyanate-based pre-polymer along with the urea-formaldehyde. Scanning electron microscopy (SEM) and optical microscopy (OM) were employed to evaluate the shape and morphology of the microcapsules. Fourier transform infrared (FTIR) spectroscopy showed the absence of free isocyanate groups within the microcapsule shell confirming the completion of shell formation reactions. OM illustrated that the microcapsules were stable over a period of 30-days in toluene and xylene. Increasing microcapsule loading improved crack repairing and anti-corrosion performance of the coating layer. Low-carbon steel coupons coated with an epoxy resin containing 10 wt% microcapsules and scribed using a scalpel blade showed no visible sign of corrosion after up to 5 weeks of exposure in a standard salt spray test chamber.  相似文献   
76.
Herein, form-stable phase change material fibrous composite containing nanoparticles was prepared via a single-step green approach using single-nozzle electrospinning for the first time. Polyethylene glycol (PEG), polyvinyl alcohol (PVA), and water were used as PCM, polymeric support and safe solvent together with simultaneous formation of nanoparticles. The introduced manner not only is free from applying organic solvents, separate addition, or buying nanoparticles and coaxial electrospinning but also it is easy and cost-effective to use for different applications. Thermal energy storage capacity of the fabricated samples reached to 135.88 and 136.27 J/g in melting process for the nanofibers and nanofibers with nanoparticles, respectively, which are mostly higher than the reported works. Meanwhile supercooling temperature was decreased for (50% PVA/50% PEG/0.1% AgNO3/1% TiO2) nanofibers compared to the other fabricated composites and the pure PEG. The effects of different weight ratio of polymers in spinning solutions, amount of titanium dioxide nanoparticles and silver nitrate, range of phase change transition and thermal endurance and stability of the samples were further discussed in details. Altogether, this renders a single-step safe route for producing form-stable PCM nanofibrous composites and also a broad insight concerning the thermal behavior of such composites for diverse renewable energy applications.  相似文献   
77.
78.
Aging is a complex process indicated by low energy levels, declined physiological activity, stress induced loss of homeostasis leading to the risk of diseases and mortality. Recent developments in medical sciences and an increased availability of nutritional requirements has significantly increased the average human lifespan worldwide. Several environmental and physiological factors contribute to the aging process. However, about 40% human life expectancy is inherited among generations, many lifespan associated genes, genetic mechanisms and pathways have been demonstrated during last decades. In the present review, we have evaluated many human genes and their non-human orthologs established for their role in the regulation of lifespan. The study has included more than fifty genes reported in the literature for their contributions to the longevity of life. Intact genomic DNA is essential for the life activities at the level of cell, tissue, and organ. Nucleic acids are vulnerable to oxidative stress, chemotherapies, and exposure to radiations. Efficient DNA repair mechanisms are essential for the maintenance of genomic integrity, damaged DNA is not replicated and transferred to next generations rather the presence of deleterious DNA initiates signaling cascades leading to the cell cycle arrest or apoptosis. DNA modifications, DNA methylation, histone methylation, histone acetylation and DNA damage can eventually lead towards apoptosis. The importance of calorie restriction therapy in the extension of lifespan has also been discussed. The role of pathways involved in the regulation of lifespan such as DAF-16/FOXO (forkhead box protein O1), TOR and JNK pathways has also been particularized. The study provides an updated account of genetic factors associated with the extended lifespan and their interactive contributory role with cellular pathways.  相似文献   
79.
Nowadays human beings are facing many environmental challenges because of frequently occurring drought hazards. Several adverse impacts of drought hazard are continued in many parts of the world. Drought has a substantial influence on water resources and irrigation. It may effect on the country’s environment, communities, and industries. Therefore, it is important to improve drought monitoring system. In this paper, we proposed a novel method – Standardized Precipitation Temperature Index (SPTI) for drought monitoring that utilize the regional tempreature. We compared the performance of our proposed drought index – SPTI with commonly used drought indices (i.e., Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI)) for 17 meteorological stations of Khyber Pakhtunkhwa (KPK) province (Pakistan) that have both extreme (arid and humid) climatic environment. We found that SPTI is strongly correlated with SPI and performed better than SPEI in low temperature regions for drought monitoring. In summary, SPTI is recommended for detecting and monitoring the drought conditions over different time scales.  相似文献   
80.
Innovations on the Internet of Everything (IoE) enabled systems are driving a change in the settings where we interact in smart units, recognized globally as smart city environments. However, intelligent video-surveillance systems are critical to increasing the security of these smart cities. More precisely, in today’s world of smart video surveillance, person re-identification (Re-ID) has gained increased consideration by researchers. Various researchers have designed deep learning-based algorithms for person Re-ID because they have achieved substantial breakthroughs in computer vision problems. In this line of research, we designed an adaptive feature refinement-based deep learning architecture to conduct person Re-ID. In the proposed architecture, the inter-channel and inter-spatial relationship of features between the images of the same individual taken from nonidentical camera viewpoints are focused on learning spatial and channel attention. In addition, the spatial pyramid pooling layer is inserted to extract the multiscale and fixed-dimension feature vectors irrespective of the size of the feature maps. Furthermore, the model’s effectiveness is validated on the CUHK01 and CUHK02 datasets. When compared with existing approaches, the approach presented in this paper achieves encouraging Rank 1 and 5 scores of 24.6% and 54.8%, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号