首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   779篇
  免费   65篇
  国内免费   7篇
电工技术   7篇
综合类   2篇
化学工业   176篇
金属工艺   13篇
机械仪表   72篇
建筑科学   15篇
能源动力   37篇
轻工业   76篇
水利工程   3篇
石油天然气   4篇
无线电   92篇
一般工业技术   181篇
冶金工业   42篇
原子能技术   6篇
自动化技术   125篇
  2024年   5篇
  2023年   34篇
  2022年   74篇
  2021年   101篇
  2020年   70篇
  2019年   78篇
  2018年   70篇
  2017年   47篇
  2016年   61篇
  2015年   36篇
  2014年   38篇
  2013年   41篇
  2012年   36篇
  2011年   35篇
  2010年   17篇
  2009年   12篇
  2008年   8篇
  2007年   11篇
  2006年   5篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  1999年   3篇
  1998年   9篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1968年   1篇
排序方式: 共有851条查询结果,搜索用时 15 毫秒
41.
ABSTRACT

Fabrication of electronic materials from nanocomposite of biopolyesters reinforced with carbon nanotubes can be regarded as the effective alternative for conventional nanocomposites consisting of non-biodegradable polymers. Commercial availability of biopolyester-based nanocomposites is limited because of their high cost compared to other polymers, but the factor of their compostable nature is worthless for environmental protection. Such nanocomposites have potential applications in biodegradable sensors, EMI materials, etc. In this review, the current progress of biopolyester/CNTs nanocomposites in the field of biodegradable electronics is reviewed and also the impact of CNTs dispersion on electrical, thermal and mechanical properties of eco composites is stipulated.  相似文献   
42.
The development of safe drug carriers is cardinal in cancer therapy, which can target the cancer cells and release the loaded drug on-demand without damaging the healthy cells of the body. In our work, we synthesized three different biodegradable polymers, poly[(ethyl aminobezoate) (ethyl glycinato) phosphazenes] (PABGPs), in different mole ratio of side groups. The successful synthesis of these PABGPs was confirmed by 1H NMR, 31P NMR, FT-IR, and gel permeation chromatography. These PABGPs were fabricated into drug (camptothecin, CPT, a hydrophobic anticancer drug) loaded nanoparticles. These drug-loaded nanoparticles showed good drug release behaviors under normal physiological conditions (pH 7.4 and temperature 37°C). These PABGPs-based nanoparticles may find their application as effective drug carriers for cancer therapy.  相似文献   
43.
44.
The ion valence state, phase composition, microstructure, and microwave dielectric properties of Sr(1?1.5x)CexTiO3 (x = 0.1–0.67, SCT) ceramics were systematically investigated. Sr(1?1.5x)CexTiO3 ceramics were produced with gradual structural evolution from a cubic to a tetragonal and turned to an orthorhombic structure in the range of 0.1 ≤ x ≤ 0.67. Above a critical Ce proportion (x = 0.4), microstructural changes and normal grain growth initially occurred. On the basis of chemical analysis results, the reduction of Ti4+ ions was hastened by tetravalent ions (Ce4+). By contrast, this reduction was inhibited by trivalent ions (Ce3+). The observed dielectric behavior was strongly influenced by phase composition, oxygen vacancies (), and defect dipoles, namely, () and (). Temperature stable ceramics sintered at 1350°C for 3 h in air yielded an intermediate value of dielectric constant (εr = 40), with the smallest reported value of temperature coefficient of resonant frequency (τf = +0.9 ppm/°C), and quality factor (Q × f = 5699 GHz) at x = 0.6.  相似文献   
45.
Silver nanoparticles (AgNPs) were successfully synthesized from the reduction of Ag+ using AgNO3 solution as a precursor and Brassica rapa var. japonica leaf extract as a reducing and capping agent. This study was aimed at synthesis of AgNPs, exhibiting less toxicity with high antibacterial activity. The characterization of AgNPs was carried out using UV–Vis spectrometry, energy dispersive X-ray spectrometry, fourier transform infrared spectrometry, field emission scanning electron microscopy, X-ray diffraction, atomic absorption spectrometry, and transmission electron microscopy analyses. The analyses data revealed the successful synthesis of nano-crystalline Ag possessing more stability than commercial AgNPs. The cytotoxicity of Brassica AgNPs was compared with commercial AgNPs using in vitro PC12 cell model. Commercial AgNPs reduced cell viability to 23% (control 97%) and increased lactate dehydrogenase activity at a concentration of 3 ppm, whereas, Brassica AgNPs did not show any effects on both of the cytotoxicity parameters up to a concentration level of 10 ppm in PC12 cells. Moreover, Brassica AgNPs exhibited antibacterial activity in terms of zone of inhibition against E. coli (11.1?±?0.5 mm) and Enterobacter sp. (15?±?0.5 mm) which was higher than some previously reported green-synthesised AgNPs. Thus, this finding can be a matter of interest for the production and safe use of green-AgNPs in consumer products.  相似文献   
46.
Choline chloride + phenylacetic acid‐based deep eutectic solvents are studied. Their most relevant experimental physicochemical properties at different mixing ratios together with the CO2 solubility data obtained in wide pressure and temperature ranges are reported. The presented materials exhibit a significant CO2 capture performance with low corrosion effect when compared with the most common amine‐based CO2 capture agents. Detailed rheological measurements are carried out and various models are applied to describe the dynamic flow behavior of the solvents. The CO2 absorption mechanism is evaluated by studying the behavior of the liquid gas and interface. Due to the advantages of low cost, nontoxicity, and favorable physical properties, these solvents are an environmentally promising alternative for effective CO2 capture technological applications.  相似文献   
47.
A sizing formulation, containing compatible and incompatible silane coupling agents with epoxy resin in conjunction with nanoscale colloidal silica, was used to modify the surface of glass fabric. The modified glass fabric/epoxy resin composite panels were fabricated and characterised by flexural test, Charpy impact test and scanning electron microscope (SEM). By combining nano silica with silane blend in the fabric sizing, more energy was consumed under bending and impacting, which resulted in an improvement of the toughness in composites. The flexural strength, bending stain and Charpy impact strength of the epoxy composite/glass fabric treated with 1?wt-% nano silica and silane blend were ~42, ~22 and 35%, respectively, higher than those of silane blend coated glass fabric-reinforced composites (without nano silica). Furthermore, the change of the brittle fracture of the composite into ductile fracture was investigated by SEM micrographs. A possible toughening mechanism was also proposed.  相似文献   
48.
Four new conjugated copolymers P1 ‐ P4 have been prepared by the Horner‐Emmons and Knoevenagel polymerization reactions. P1 ‐ P4 were characterized by NMR, FTIR, cyclic voltammetry (CV), diffuse reflectance UV–vis spectroscopy (DR UV–vis), and thermal gravimetric analysis (TGA). The optical band gaps of these polymers, calculated from the onset absorption edge, were found between 2.15 and 2.34 eV. The band gaps calculated by CV were ranged between 1.94 and 2.57 eV. The presence of nitrile moiety on the phenylene vinylene unit is believed to influence the optical properties of these polymers, i.e., P3 and P4 have shown lower band gaps than P1 and P2 . All polymers possess good iodide anion sensing property over a wide range of other anions (F?, Cl?, Br?, , CN?), indicating their promise in fabricating selective iodide sensors. The initial colorless solution of polymers in THF changed to deep yellow upon the addition of aqueous solution of iodide salts along with significant changes in the UV–vis spectra of the polymers. The limit of detection (LOD) for P1‐P4 were found between 0.43 and 2.54 mM . These polymers constitute long alkoxy and alkyl side chains, bearing excellent solubility in most common organic solvents which warrants their suitability for photovoltaic devices application. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44948.  相似文献   
49.
There is an urgent need to treat diabetes, and therefore, this work reports on a chitosan-built hydrogel functionalized by a glucose sensing moiety, which simulates pancreatic activity. The effect of external stimuli on various internal properties was investigated to establish the action of the hydrogel. The model drugs, fluorescein (D1) and rhodamine (D2), with a diol architecture, were investigated spectroscopically with 75.94% loading and 65.63% release. Consequently, a ligand to glucose ratio of 2:1 in comparison with a ligand to model drug ratio of 1:1 was addressed. The system was expected to lead to findings on applications for the self-controlled release of insulin in response to blood glucose levels.  相似文献   
50.
Conventional approaches of regulating natural biochemical and biological processes are greatly hampered by the complexity of natural systems. Therefore, current biotechnological research is focused on improving biological systems and processes using advanced technologies such as genetic and metabolic engineering. These technologies, which employ principles of synthetic and systems biology, are greatly motivated by the diversity of living organisms to improve biological processes and allow the manipulation and reprogramming of target bioreactions and cellular systems. This review describes recent developments in cell biology, as well as genetic and metabolic engineering, and their role in enhancing biological processes. In particular, we illustrate recent advancements in genetic and metabolic engineering with respect to the production of bacterial cellulose (BC) using the model systems Gluconacetobacter xylinum and Gluconacetobacter hansenii. Besides, the cell-free enzyme system, representing the latest engineering strategies, has been comprehensively described. The content covered in the current review will lead readers to get an insight into developing novel metabolic pathways and engineering novel strains for enhanced production of BC and other bioproducts formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号