首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1435篇
  免费   78篇
  国内免费   1篇
电工技术   5篇
化学工业   500篇
金属工艺   17篇
机械仪表   15篇
建筑科学   52篇
矿业工程   1篇
能源动力   26篇
轻工业   297篇
水利工程   13篇
无线电   45篇
一般工业技术   201篇
冶金工业   159篇
原子能技术   6篇
自动化技术   177篇
  2023年   18篇
  2022年   105篇
  2021年   95篇
  2020年   45篇
  2019年   35篇
  2018年   48篇
  2017年   41篇
  2016年   62篇
  2015年   30篇
  2014年   75篇
  2013年   100篇
  2012年   84篇
  2011年   118篇
  2010年   100篇
  2009年   73篇
  2008年   77篇
  2007年   60篇
  2006年   40篇
  2005年   44篇
  2004年   24篇
  2003年   30篇
  2002年   20篇
  2001年   11篇
  2000年   17篇
  1999年   23篇
  1998年   11篇
  1997年   20篇
  1996年   7篇
  1995年   11篇
  1994年   9篇
  1993年   7篇
  1992年   8篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1984年   7篇
  1982年   2篇
  1981年   4篇
  1980年   7篇
  1979年   3篇
  1977年   1篇
  1976年   3篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1955年   1篇
排序方式: 共有1514条查询结果,搜索用时 15 毫秒
121.
Hybrid materials obtained through a Microwave-assisted grafting of organic functional groups on mesoporous silica (MCM-41 type) have been characterized by X-ray powder diffraction, TG-DSC, N2 adsorption, solid state 13C- and 29Si-NMR, TEM and SEM. The studied grafting procedure is effective in the preparation of hybrid organosilicas under solvent-free conditions. Microwaves allows an ultra-fast and clean functionalization of the mesoporous materials and the method has been applied to produce a wide series of functional materials. The hybrid materials maintain the original mesoporous structure when the loading of linked organic groups does not exceed 10 %. In this cases, the slight pore volume reduction is linearly correlated to the organic amount in the product. If functional groups able to interact among them through hydrogen bond are used, hybrid materials exhibit high Organic/SiO2 ratios and low pore volumes due to the formation of a network occluding the pores, where functional groups of free organosilane molecules interacts with the functional groups of molecules linked to the matrix. NMR data confirm that the network is composed by organosilane molecules linked or not to the framework. Acid washing is able to labilize hydrogen bond and open the network. In the case of bulky but chemically inert functionalising agents the network is not produced.  相似文献   
122.
In the pulmonary vasculature, mechanical forces such as cyclic stretch induce changes in vascular signaling, tone and remodeling. Nitric oxide is a potent regulator of soluble guanylate cyclase (sGC), which drives cGMP production, causing vasorelaxation. Pulmonary artery smooth muscle cells (PASMCs) express inducible nitric oxide synthase (iNOS), and while iNOS expression increases during late gestation, little is known about how cyclic stretch impacts this pathway. In this study, PASMC were subjected to cyclic stretch of 20% amplitude and frequency of 1 Hz for 24 h and compared to control cells maintained under static conditions. Cyclic stretch significantly increased cytosolic oxidative stress as compared to static cells (62.9 ± 5.9% vs. 33.3 ± 5.7% maximal oxidation), as measured by the intracellular redox sensor roGFP. Cyclic stretch also increased sGCβ protein expression (2.5 ± 0.9-fold), sGC activity (1.5 ± 0.2-fold) and cGMP levels (1.8 ± 0.2-fold), as well as iNOS mRNA and protein expression (3.0 ± 0.9 and 2.6 ± 0.7-fold, respectively) relative to control cells. An antioxidant, recombinant human superoxide dismutase (rhSOD), significantly decreased stretch-induced cytosolic oxidative stress, but did not block stretch-induced sGC activity. Inhibition of iNOS with 1400 W or an iNOS-specific siRNA inhibited stretch-induced sGC activity by 30% and 68% respectively vs. static controls. In conclusion, cyclic stretch increases sGC expression and activity in an iNOS-dependent manner in PASMC from fetal lambs. The mechanism that produces iNOS and sGC upregulation is not yet known, but we speculate these effects represent an early compensatory mechanism to counteract the effects of stretch-induced oxidative stress. A better understanding of the interplay between these two distinct pathways could provide key insights into future avenues to treat infants with pulmonary hypertension.  相似文献   
123.
Microwaves at 2.45 GHz have been applied to ignite the combustion synthesis of compacted Ti–Si–C powders mixtures, having 1:1:1 atomic ratio, in order to join SiC-based components. A mixture of different refractory phases such as TiC and TiSi2 were obtained. Depending on the synthesis conditions, no residual silicon in the joint was detected, suggesting the suitability of the here proposed experimental joining approach for nuclear plants and high temperature applications. A simplified model was developed with the aim of obtaining a deeper understanding of the here proposed rapid, almost pressure-less and localized heating joining method. Experimental and numerical simulation results demonstrate that joining of SiC can be rapidly obtained with minimization of heat affected zones in the SiC substrates. Maximum apparent shear strength values of the joints ranged from 9.9 to 45.1 MPa, depending on the process conditions.  相似文献   
124.
125.
Pristine and (SiC+Te)-added MgB2 powders, green and spark plasma sintered (SPS) compacts were investigated from the viewpoint of quasi-static and dynamic (Split-Hopkinson Pressure Bar, SHPB) compressive mechanical properties The amount of the additive (SiC+Te) was selected to be the optimum one for maximization of the superconducting functional parameters. Pristine and added MgB2 show very similar compressive parameters (tan δ, fracture strength, Vickers hardness, others) and fragment size in the SHPB test. However, for the bulk SPSed samples the ratio of intergranular to transgranular fracturing changes, the first one being stronger in the added sample. This is reflected in the quasi-static KIC that is higher for the added sample. Despite this result, sintered samples are brittle and have roughly similar fragmentation behavior as for brittle engineering ceramics. In the fragmentation process, the composite nature of our samples should be considered with a special focus on MgB2 blocks (colonies) that show the major contribution to fracturing. The Glenn-Chudnovsky model of fracturing under dynamic load provides the closest values to our experimental fragment size data.  相似文献   
126.
The thin‐film morphology of stereoregular syndiotactic poly(p‐methylstyrene)–(cis‐1,4‐polybutadiene) (sP(pMS–B)) multiblock copolymers has been investigated using tapping mode atomic force microscopy with variation of the polymer composition and monomer block lengths. The morphology of the thin films ranges from isolated circular domains of sP(pMS) embedded into a matrix of polybutadiene (PB) to isolated domains of PB embedded into a matrix of sP(pMS), passing through bicontinuous (jagged) lamellae when the pMS concentration is in the range 20–67 mol%. Multiple folding of the polymer segments, i.e. where reciprocal inclusions of polymer segments to each other phase are able to generate greater domain, has been postulated and validated by considerations on the polymer architecture and the thermal and crystalline behaviour. © 2019 Society of Chemical Industry  相似文献   
127.
128.
Colour research from different scientific traditions start from different basic questions and use different methods and concepts. This makes it difficult to communicate and to judge result relevance in a wider perspective. Here we start from architects' need of colour knowledge and discuss recent studies of colour appearance and colour emotion, with and without explicit connection to architecture. We stress the need for further development and clarification of concepts and conclude that the multitude of studies with different approaches can be seen as cases, jointly adding to a widened and deepened understanding of colour. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2010  相似文献   
129.
130.
xLi2O–(1−x)α-Fe2O3 (x=0.1, 0.3, 0.5, and 0.7) nanoparticle systems were successfully synthesized by mechanochemical activation of Li2O and α-Fe2O3 mixtures for 0–12 h of ball milling time. The study aims at exploring the formation of magnetic oxide semiconductors at the nanoscale, which is of crucial importance for catalysis, sensing and electrochemical applications. X-ray powder diffraction (XRD), Mössbauer spectroscopy and magnetic measurements were used to study the phase evolution of xLi2O–(1−x)α-Fe2O3 nanoparticle systems under the mechanochemical activation process. Rietveld refinement of the XRD patterns yielded the values of the particle size as function of composition and milling times and indicated the presence of Li-substituted hematite and tetra lithium iron oxide LiFeO2, along with the formation of multiple phases for large x values and long milling times. The Mössbauer studies showed that the spectrum of the mechanochemically activated composites evolved from a sextet for hematite to sextets and a doublet upon duration of the milling process with lithium oxide. Magnetic measurements recorded at 5 K to room temperature (RT) in an applied magnetic field of 50,000 Oe showed that the magnetization of the milled samples is larger at low temperatures than at RT and increases with decreasing particle size. Zero field cooling measurements made possible the determination of the blocking temperatures of the specimens as function of ball milling time and evidenced the occurrence of superparamagnetism in the studied samples. This result correlates well with the observed presence of a quadrupole-split doublet in the Mössbauer spectra.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号