首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1859篇
  免费   107篇
  国内免费   12篇
电工技术   28篇
综合类   5篇
化学工业   482篇
金属工艺   26篇
机械仪表   75篇
建筑科学   49篇
矿业工程   2篇
能源动力   167篇
轻工业   183篇
水利工程   13篇
石油天然气   31篇
无线电   177篇
一般工业技术   377篇
冶金工业   46篇
原子能技术   17篇
自动化技术   300篇
  2024年   10篇
  2023年   71篇
  2022年   134篇
  2021年   147篇
  2020年   104篇
  2019年   108篇
  2018年   121篇
  2017年   97篇
  2016年   129篇
  2015年   73篇
  2014年   127篇
  2013年   171篇
  2012年   106篇
  2011年   102篇
  2010年   80篇
  2009年   74篇
  2008年   50篇
  2007年   40篇
  2006年   39篇
  2005年   22篇
  2004年   19篇
  2003年   15篇
  2002年   15篇
  2001年   14篇
  2000年   6篇
  1999年   12篇
  1998年   17篇
  1997年   6篇
  1996年   13篇
  1995年   5篇
  1994年   8篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有1978条查询结果,搜索用时 0 毫秒
31.
Radio wave propagation plays a very important part in the design and eventually dictates performance of space communication systems. Over time, the requirements of satellite communication have grown extensively where higher capacity communications systems are needed. Escalating demands of microwave and millimetre wave communications are causing frequency spectrum congestion. Hence, existing and future satellite system operators are planning to employ frequency bands well above 10 GHz. The challenge in operating at such high frequencies for communication purposes is that there exists stronger electromagnetic interaction between the radio signals and atmospheric hydrometeors. Such instances will degrade the performance of such high frequency satellite communication systems. The development of a revised model for a better‐improved rain fade prediction of signal propagations in tropical region is considered very important. Researchers and engineers can employ the model to accurately plan the future high frequencies satellite services. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
32.
Blending 10?vol% of ethanol into hydrocarbon base gasoline (HBG) increases significantly the vapour pressure of the blend (E10), and exhibits near-azeotrope behaviour that severely affects the shape of E10 distillation curve. The distillation curves of HBG and E10 fuel blend, were constructed using ASTM D86 distillation data, and the areas under each distillation curve, were calculated through the numerical trapezoid rule (NTR) and calculus definite integration (CDI) methods. Consequently, the area due to azeotrope formation (ADAF), was estimated. In this paper, we present the impact of small concentration of nonionic surfactant on the area under distillation curve (AUDC) of E10 fuel blend and the area due to azeotrope formation (ADAF). Also, the influences of the added surfactant on the volatility criteria of the investigated E10 fuel blend were discussed.  相似文献   
33.
34.
In this study, a series of donor–acceptor–donor (D-A-D) type small molecules based on the fluorene and diphenylethenyl enamine units, which are distinguished by different acceptors, as holetransporting materials (HTMs) for perovskite solar cells is presented. The incorporation of the malononitrile acceptor units is found to be beneficial for not only carrier transportation but also defects passivation via Pb–N interactions. The highest power conversion efficiency of over 22% is achieved on cells based on V1359, which is higher than that of spiro-OMeTAD under identical conditions. This st shows that HTMs prepared via simplified synthetic routes are not only a low-cost alternative to spiro-OMeTAD but also outperform in efficiency and stability state-of-art materials obtained via expensive cross-coupling methods.  相似文献   
35.

Wireless body area network (WBAN) has witnessed significant attentions in the healthcare domain using biomedical sensor-based monitoring of heterogeneous nature of vital signs of a patient’s body. The design of frequency band, MAC superframe structure, and slots allocation to the heterogeneous nature of the patient’s packets have become the challenging problems in WBAN due to the diverse QoS requirements. In this context, this paper proposes an Energy Efficient Traffic Prioritization for Medium Access Control (EETP-MAC) protocol, which provides sufficient slots with higher bandwidth and guard bands to avoid channels interference causing longer delay. Specifically, the design of EETP-MAC is broadly divided in to four folds. Firstly, patient data traffic prioritization is presented with broad categorization including Non-Constrained Data (NCD), Delay-Constrained Data (DCD), Reliability-Constrained Data (RCD) and Critical Data (CD). Secondly, a modified superframe structure design is proposed for effectively handling the traffic prioritization. Thirdly, threshold based slot allocation technique is developed to reduce contention by effectively quantifying criticality on patient data. Forth, an energy efficient frame design is presented focusing on beacon interval, superframe duration, and packet size and inactive period. Simulations are performed to comparatively evaluate the performance of the proposed EETP-MAC with the state-of-the-art MAC protocols. The comparative evaluation attests the benefit of EETP-MAC in terms of efficient slot allocation resulting in lower delay and energy consumption.

  相似文献   
36.
Journal of Communications Technology and Electronics - This paper implements mathematically rigorous extended trial function algorithm to address cubic–quartic optical solitons in...  相似文献   
37.
Self‐assembly of 3D structures presents an attractive and scalable route to realize reconfigurable and functionally capable mesoscale devices without human intervention. A common approach for achieving this is to utilize stimuli‐responsive folding of hinged structures, which requires the integration of different materials and/or geometric arrangements along the hinges. It is demonstrated that the inclusion of Kirigami cuts in planar, hingeless bilayer thin sheets can be used to produce complex 3D shapes in an on‐demand manner. Nonlinear finite element models are developed to elucidate the mechanics of shape morphing in bilayer thin sheets and verify the predictions through swelling experiments of planar, millimeter‐scaled PDMS (polydimethylsiloxane) bilayers in organic solvents. Building upon the mechanistic understandings, The transformation of Kirigami‐cut simple bilayers into 3D shapes such as letters from the Roman alphabet (to make “ADVANCED FUNCTIONAL MATERIALS”) and open/closed polyhedral architectures is experimentally demonstrated. A possible application of the bilayers as tether‐less optical metamaterials with dynamically tunable light transmission and reflection behaviors is also shown. As the proposed mechanistic design principles could be applied to a variety of materials, this research broadly contributes toward the development of smart, tetherless, and reconfigurable multifunctional systems.  相似文献   
38.

The latest developments in mobile computing technology have increased the computing capabilities of smart mobile devices (SMDs). However, SMDs are still constrained by low bandwidth, processing potential, storage capacity, and battery lifetime. To overcome these problems, the rich resources and powerful computational cloud is tapped for enabling intensive applications on SMDs. In Mobile Cloud Computing (MCC), application processing services of computational clouds are leveraged for alleviating resource limitations in SMDs. The particular deficiency of distributed architecture and runtime partitioning of the elastic mobile application are the challenging aspects of current offloading models. To address these issues of traditional models for computational offloading in MCC, this paper proposes a novel distributed and elastic applications processing (DEAP) model for intensive applications in MCC. We present an analytical model to evaluate the proposed DEAP model, and test a prototype application in the real MCC environment to demonstrate the usefulness of DEAP model. Computational offloading using the DEAP model minimizes resources utilization on SMD in the distributed processing of intensive mobile applications. Evaluation indicates a reduction of 74.6% in the overhead of runtime application partitioning and a 66.6% reduction in the CPU utilization for the execution of the application on SMD.

  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号