首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   17篇
  国内免费   5篇
电工技术   5篇
综合类   1篇
化学工业   81篇
金属工艺   9篇
机械仪表   20篇
建筑科学   16篇
能源动力   31篇
轻工业   23篇
水利工程   9篇
石油天然气   6篇
无线电   46篇
一般工业技术   62篇
冶金工业   15篇
原子能技术   1篇
自动化技术   72篇
  2024年   5篇
  2023年   6篇
  2022年   18篇
  2021年   29篇
  2020年   32篇
  2019年   23篇
  2018年   36篇
  2017年   21篇
  2016年   29篇
  2015年   13篇
  2014年   24篇
  2013年   28篇
  2012年   18篇
  2011年   21篇
  2010年   18篇
  2009年   16篇
  2008年   12篇
  2007年   7篇
  2006年   8篇
  2005年   8篇
  2004年   8篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   5篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1980年   1篇
排序方式: 共有397条查询结果,搜索用时 0 毫秒
21.
Shabani  Mohsen Ostad  Baghani  Amir  Khorram  Ali  Heydari  Fatemeh 《SILICON》2020,12(12):2977-2987
Silicon - Magnetic stirring is considered to be the most useful stirring method in semi-solid casting processes which doesn’t have the restrictions of the mechanical stirring. In this...  相似文献   
22.
23.
In this study, solvent‐free nanofibrous electrolytes were fabricated through an electrospinning method. Polyethylene oxide (PEO), lithium perchlorate and ethylene carbonate were used as polymer matrix, salt and plasticizer respectively in the electrolyte structures. Keggin‐type hetero polyoxometalate (Cu‐POM@Ru‐rGO, Ni‐POM@Ru‐rGO and Co‐POM@Ru‐rGO (POM, polyoxometalate; rGO, reduced graphene oxide)) nanoparticles were synthesized and inserted into the PEO‐based nanofibrous electrolytes. TEM and SEM analyses were carried out for further evaluation of the synthesized filler structures and the electrospun nanofibre morphologies. The fractions of free ions and crystalline phases of the as‐spun electrolytes were estimated by obtaining Fourier transform infrared and XRD spectra, respectively. The results showed a significant improvement in the ionic conductivity of the nanofibrous electrolytes by increasing filler concentrations. The highest ionic conductivity of 0.28 mS cm?1 was obtained by the introduction of 0.49 wt% Co‐POM@Ru‐rGO into the electrospun electrolyte at ambient temperature. Compared with solution‐cast polymeric electrolytes, the electrospun electrolytes present superior ionic conductivity. Moreover, the cycle stability of the as‐spun electrolytes was clearly improved by the addition of fillers. Furthermore, the mechanical strength was enhanced with the insertion of 0.07 wt% fillers to the electrospun electrolytes. The results implied that the prepared nanofibres are good candidates as solvent‐free electrolytes for lithium ion batteries. © 2020 Society of Chemical Industry  相似文献   
24.
This study was aimed to assess the effects of reinforcement nanoparticles content, on the microstructural features, mechanical properties, and corrosion-related properties of Ni-Co-Cr2O3 nanocomposite coatings. Scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS), and X-ray diffraction (XRD) analysis were employed in order to evaluate the microstructural features and chemical composition of the nanocomposites. Moreover, the microhardness tester and electrochemical impedance spectra (EIS) tests coupled with potentiodynamic polarization measurements were used to investigate the mechanical and corrosion-related properties, respectively. Results demonstrate that albeit the volume fraction of cobalt in coating, average particle size, Cr2O3 nanoparticle content in coating, and microstructural features are of prime significance in determining the mentioned properties of the nanocomposite coatings, Co content is more important. Actually, Cr2O3 nanoparticles serve as suitable nucleation sites for Co particles deposition throughout the microstructure. Thus, combined actions of Cr2O3 nanoparticles incorporation and their optimal content ensures the nucleation of high population of Co particles, which significantly contributes to the improvement in the properties. The Ni-Co-8.9 wt%Cr2O3 nanocomposite coating exhibits the superior mechanical and corrosion-related properties.  相似文献   
25.
26.
Bio-/environment-friendly cationic gemini surfactant, ethane-1,2-diyl bis(N,N-dimethyl-N-hexadecylammoniumacetoxy)dichloride, referred to as 16-E2-16, was synthesized and characterized. Corrosion inhibition effects of 16-E2-16 on mild steel (MS) surface in 1 M HCl solution at 30, 40, 50 and 60 °C were evaluated using gravimetric analysis, potentiodynamic polarisation and electrochemical impedance spectroscopy measurements. The nature of the protective inhibitor film formed on the MS surface was analysed by SEM, EDAX and FT-IR, while TGA was used to assure the thermal behaviour and stability of the film at high temperature. The formation of [inhibitor-Fe2+] on the surface of MS was confirmed by UV–visible spectroscopy. The inhibition efficiency of the studied inhibitor increased with increasing concentration and solution temperature. The compound behaved as a mixed type inhibitor and acted by blocking the electrode surface by means of adsorption obeying the Langmuir adsorption isotherm. Surface active properties and corrosion inhibition effects of 16-E2-16 in the presence of inorganic (NaI) and organic (NaSal) salts were also investigated and are discussed. Density functional theory calculations have been carried out to correlate the efficiency of the compound with its intrinsic molecular parameters.  相似文献   
27.
In this study, a series of unconfined compression tests have been performed to determine the effect of polyvinyl alcohol (PVA) fiber inclusion on deformation characteristics of cemented sand. The cement contents were 2, 4, and 6% by weight of the dry sand and samples were cured for 7 days. PVA fibers with a length of 12 mm and a diameter of 0.1 mm were added to sand-cement mixtures at a weight ratio of 0.0%, 0.3%, 0.6% and 1% (dry wt.). The compression stress-axial strain, secant modulus of elasticity (E50), tangent modulus of elasticity (Etan), failure mode, energy absorption capacity (EA), energy base index, strain base index, deformability index and axial strain at peak strength of the samples were described. Tests results show that addition of cement to sand increased stiffness and unconfined compression strength (UCS), and leading to a brittle behavior. Moreover, addition of PVA fibers to cemented sand increased the UCS and axial strain at peak strength and increased softening stress after the maximum strength. In addition, the fiber inclusion increases the energy absorption capacity and decreases the secant modulus of elasticity.  相似文献   
28.
In this study, 72 consolidated drained triaxial tests have been carried out to evaluate the effect of relative density, weight ratio of fibers, weight ratio of cement and confining pressure on the deformability properties of specimens made from Babolsar sand, Portland cement type II and polyvinyl alcohol (PVA) fibers. The results of this study show that the stiffness corresponding to 50% of the shear strength increases with the addition of cement. The presence of fibers within the cement specimen reduces stiffness. On the other hand, for uncemented specimen, adding fibers can reduce the stiffness of the specimens by 80% density, while adding fibers increases stiffness for specimens with 50% density. Adding cement to sand increases the secant stiffness at lower strains, but at high strains, cement content does not affect the secant stiffness. For specimens with relative density of 80%, in low strains, adding fibers reduces the secant stiffness. In high strains, the presence of fibers increases the secant stiffness. The distance between the yielding point and failure point increases with increasing confining pressure and fiber content, but adding cement reduces this distance. The yielding point of cemented sample depends on cement content and confining pressure. The inclusion of PVA fibers to the cemented soil increases the energy absorption. The addition of cement increases the energy absorption, but the amount of energy absorption increase is not significant. Moreover, the increase of confining pressure increases the difference in the absorbed energy of the specimens with different relative densities.  相似文献   
29.
A new dual-template surface imprinted polymer for Cu(II) and Pb(II) was synthesized in one pot. Magnetic graphene oxide was self-assembled with low cost and environmentally benign thiourea. Presence of sulfur and nitrogen donor atoms provide hooks for coordination and partial reduction of graphene oxide matrix. It was used as an solid-phase extraction adsorbent for extraction, preconcentration, and coupled with flame atomic absorption spectrometry to manifest performance comparable with inductively coupled plasma atomic emission spectrometry (ICPAES) both in terms of quantification limit as well as interference. The critical experimental parameters such as pH; 4.6, contact time of 15 min and initial concentration of 777 (Qe; 227 mg g−1) and 800 μg L−1 (Qe; 273 mg g−1) for Cu(II) and Pb(II), respectively, were optimized using RSM-CCD and artificial neural network. The adsorption process was kinetically faster (50% adsorption in 5 min), following fractal-like-pseudo-second-order (FLPSO) kinetics and Brouers–Sotolongo isotherm model owing to the heterogenous energy landscape. The imprinting factors were in the range of 4–7 in the presence of all coexisting ions. The proposed method was robust in the determination and removal of Cu(II) and Pb(II) from food, ground water, and industry effluents with low limit of detection (Cu(II); 1.03 μg L−1 & Pb(II); 1.79 μgL−1). Spiking and recovery tests were used to assess the method's accuracy. Cu(II)/Pb(II) loaded dual template IIP (DIIP) was utilized to remove anionic dyes with >95% efficiency. Thorough examination of the method and material selectivity (in binary, ternary, and multielement system), multi fold applications of determination, removal of Cu(II), Pb(II), and removal of anionic dyes makes DIIP a promising candidate for environmental remediation.  相似文献   
30.
An eco-friendly procedure for synthesis of 2-(2-oxo-2H-chromen-4-yl)-3-arylthiazolidin-4-one derivatives by three-component reaction of 2-oxo-2H-chromene-4-carbaldehydes, aromatic amines and thioglycolic acid, with tetramethylbutane-1,4-diammonium acetate as a low-cost ionic liquid catalyst under reflux condition is described. The use of an ionic liquid as a catalyst has the advantages of high yields, short reaction time and environmentally friendly reaction media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号