首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   8篇
电工技术   2篇
化学工业   65篇
金属工艺   1篇
建筑科学   2篇
矿业工程   1篇
能源动力   11篇
轻工业   23篇
水利工程   3篇
石油天然气   3篇
无线电   13篇
一般工业技术   12篇
自动化技术   18篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   10篇
  2020年   9篇
  2019年   14篇
  2018年   13篇
  2017年   7篇
  2016年   14篇
  2015年   10篇
  2014年   11篇
  2013年   21篇
  2012年   14篇
  2011年   9篇
  2010年   6篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
1.
Tri-flo cyclone,as a dense-medium separation device,is one of the most typical environmentally friendly industrial techniques in the coal washery plants.Surpris...  相似文献   
2.
The identification of expression quantitative trait loci (eQTL) is an important component in efforts to understand how genetic variants influence disease risk. MicroRNAs (miRNAs) are short noncoding RNA molecules capable of regulating the expression of several genes simultaneously. Recently, several novel isomers of miRNAs (isomiRs) that differ slightly in length and sequence composition compared to their canonical miRNAs have been reported. Here we present isomiR-eQTL, a user-friendly database designed to help researchers find single nucleotide polymorphisms (SNPs) that can impact miRNA (miR-eQTL) and isomiR expression (isomiR-eQTL) in 30 cancer types. The isomiR-eQTL includes a total of 152,671 miR-eQTLs and 2,390,805 isomiR-eQTLs at a false discovery rate (FDR) of 0.05. It also includes 65,733 miR-eQTLs overlapping known cancer-associated loci identified through genome-wide association studies (GWAS). To the best of our knowledge, this is the first study investigating the impact of SNPs on isomiR expression at the genome-wide level. This database may pave the way for researchers toward finding a model for personalised medicine in which miRNAs, isomiRs, and genotypes are utilised.  相似文献   
3.
The edible red seaweed Eucheuma cottonii is abundantly cultivated for carrageenan production. This study investigated the effects of dietary E. cottonii polyphenol-rich extract (ECME) on breast cancer. In vitro assays showed that ECME was antiproliferative against oestrogen-dependent MCF-7 and oestrogen-independent MB-MDA-231 human breast-cancer cells (IC50 values of 20 and 42 μg/ml, respectively) but was non-toxic to normal cell lines. The ECME (150 and 300 mg/kg BW) was fed to female rats and, after 4 weeks, rat mammary tumour was induced using LA7 cells (inoculated subcutaneously). The ECME inhibited tumour development and erythrocyte lipid peroxidation in the cancer-induced rats, dose-dependently. It showed anti-oestrogenic effects on the rat estrous cycle and serum hormone levels. Electron microscopy and histopathology observations confirmed apoptosis in the rat mammary tumours. The polyphenol-rich ECME was tumour-suppressive via apoptosis induction, downregulating the endogenous oestrogen biosynthesis, and improving antioxidative status in the rats.  相似文献   
4.
Polymer/clay nanocomposites have some unique properties due to combination of flame resistance and improved mechanical and thermal stability properties which are important to enhance the material quality and performance. The objective of this work was to investigate the effect of organically modified montmorillonite (org‐MMT) on the thermal and flame retardant as well as hardness and mechanical properties of the nanocomposites based on the natural rubber (NR). It was shown that by the addition of 3 wt % of org‐MMT to NR, its aging hardness rise was decreased more than 55% and the ignition time was delayed about 150%. The reduction in heat release rate peak value was equal to 54% compared to the pristine NR. Addition of org‐MMT improved the thermal stability of the NR. Furthermore, nanocomposites which were calendared before curing showed much more thermal stability and fire resistance than those which contained similar amount of organoclay. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
5.
A commercially available catalyst with high photocatalytic activity (Degussa p‐25) was immobilised on a comparatively inexpensive substrate that included cotton/polyester knitted fabric by citric acid under sonication. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy analysis revealed the presence of nano titanium dioxide on the surface of the fabric. Discoloration of CI Reactive Black 5 in aqueous solution was successfully carried out by adding a piece of nano titanium dioxide‐treated fabric into the dye solution under UV‐A irradiation. The ultraviolet–visible spectra indicated complete discoloration of CI Reactive Black 5 dye solutions. CI Reactive Black 5 solution, along with electrolytes including sodium sulphate and calcium carbonate, was also successfully discoloured with lower efficiency. Further, the photocatalytic properties of the nano titanium dioxide‐immobilised fabric did not change after dye solution discoloration and it was used several times for discoloration of the same solutions. The proposed system can be developed on a large scale.  相似文献   
6.
High-performance polymers for water desalination were designed. A novel polysulfone was prepared via reaction between a new synthesized pyridine-based diol and bis(4-fluorophenyl) sulfone. Also a series of disulfonated copolymers with sulfonation content of 20–50 wt% were prepared to compare the hydrophilicity with the pristine polymer. The generated membranes were characterized by microscopic, mechanical, and thermal methods, and the influence of sulfonation degree on hydrophilicity, water flux, and salt rejection was followed. Water flux of sulfonated membranes was increased compare to pristine membrane as sulfonation increased, while the salt rejection decreased. Optimum application performance was obtained for membrane with 30 wt% sulfonation content. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48568.  相似文献   
7.
Hydrogels, nanogels and nanocomposites show increasing potential for application in drug delivery systems due to their good chemical and physical properties. Therefore, we were encouraged to combine them to produce a new compound with unique properties for a long‐term drug release system. In this regard, the design and application of a nanocomposite hydrogel containing entrapped nanogel for drug delivery are demonstrated. To this aim, we first prepared an iron oxide nanocomposite nanogel based on poly(N‐isopropylacrylamide)‐co‐((2‐dimethylaminoethyl) methacrylate) (PNIPAM‐co‐PDMA) grafted onto sodium alginate (NaAlg) as a biocompatible polymer and iron oxide nanoparticles (ION) as nanometric base (PND/ION‐NG). This was then added into a solution of PDMA grafted onto NaAlg. Through dropwise addition of mixed aqueous solution of iron salts into the prepared polymeric solution, a novel hydrogel nanocomposite with excellent pH, thermal and magnetic responsivity was fabricated. The synthesized samples were fully characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy with energy‐dispersive X‐ray analysis, vibrating sample magnetometry and atomic force microscopy. A mechanism for the formation of PNIPAM‐co‐PDMA/NaAlg‐ION nanogel–PDMA/NaAlg‐ION hydrogel and PND/ION nanogel is suggested. Swelling capacity was measured at various temperatures (25 to 45 °C), pH values (from 2 to 11) and magnetic field and under load (0.3 psi) and the dependence of swelling properties of the nanogel–hydrogel nanocomposite on these factors was well demonstrated. The release rate of doxorubicin hydrochloride (DOX) as an anticancer drug was studied at different pH values and temperatures in the presence and absence of a magnetic field. The results showed that these factors have a high impact on drug release from this nanocomposite. The result showed that DOX release could be sustained for up to 12.5 days from these nanocomposite hydrogels, significantly longer than that achievable using the constituent hydrogel or nanogel alone (<1 day). The results indicated that the nanogel–hydrogel nanocomposite can serve as a novel nanocarrier for anticancer drug delivery. © 2019 Society of Chemical Industry  相似文献   
8.
9.
A dynamic mathematical model for drying of agricultural products in an indirect cabinet solar dryer is presented. This model describes the heat and mass transfer in the drying chamber and also considers the heat transfer and temperature distribution in a solar collector under transient conditions. For this purpose, using conservation laws of heat and mass transfer and considering the physical phenomena occurring in a solar dryer, the governing equations are derived and solved numerically. The model solution provides an effective tool to study the variation of temperature and humidity of the drying air, drying material temperature, and its moisture content on each tray. The predicted results are compared with available experimental data. It is shown that the model can predict the performance of the cabinet solar dryer in unsteady-state operating conditions well. Furthermore, the effect of some operating parameters on the performance and efficiency of dryer is investigated and compared with selected published data.  相似文献   
10.
The properties of electrospun nanofibrous membranes (ENMs), including pore size, surface roughness, and hydrophilicity, significantly affect crosslinking, thickness, and morphology of the polyamide selective layer formed on top of ENM substrate in thin film composite membranes, and, ultimately the performance of membranes. We produced polyamide 66 nanofiber layers with a thickness of 10 μm and a fiber diameter of 55 nm, considerably thinner and finer than usual ENM substrates. We then subjected this thin layer to post-production treatment using the efficient low-pressure heat-press (LPHP) method at a pressure of 3 kPa at three different temperatures and two different time intervals. It was found that the morphology of the nanofiber layer was preserved, and its structural characteristics, including pore structure, surface roughness, wettability, crystallinity, and specific surface area, were favorable with LPHP treatment. The optimal conditions were obtained with treatment at 190°C for 3600 s, in which the roughness of the nanofiber substrate decreased from 64 to 25 nm. Using these substrates offers new, less-explored opportunities for optimizing the LPHP treatment of the substrate. These substrates are proposed for a new generation of TFC membranes in a continuous production line, with the possibility of scaling up for pressure- and osmosis-driven membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号