首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   10篇
电工技术   2篇
化学工业   63篇
金属工艺   1篇
建筑科学   2篇
矿业工程   1篇
能源动力   11篇
轻工业   23篇
水利工程   3篇
石油天然气   3篇
无线电   13篇
一般工业技术   12篇
自动化技术   18篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   10篇
  2020年   9篇
  2019年   14篇
  2018年   13篇
  2017年   7篇
  2016年   14篇
  2015年   10篇
  2014年   11篇
  2013年   21篇
  2012年   14篇
  2011年   9篇
  2010年   6篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
排序方式: 共有152条查询结果,搜索用时 390 毫秒
71.
Chemical functionalization of chitosan biopolymer and chitosan-magnetite nanocomposite was performed with sulfonic acid functional groups to achieve new solid acid materials. The sulfonic acid functional groups were created through the ring opening nucleophilic reaction of amine groups of chitosan with 1,4-butane sultone. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopies (XPS) verified the successful sulfonic acid functionalization of chitosan. The obtained sulfonic acid functionalized chitosan-magnetite nanocomposite showed superparamagnetic properties according to the vibrating sample magnetometry analysis and exhibited magnetic separation feature from dispersed mixtures. Nitrogen adsorption-desorption analysis indicated the increase in surface area after formation of chitosan-magnetite nanocomposite and functionalization with sulfonic acid. Both of the prepared solid acids exhibited high catalytic activities in the acid-catalyzed acetic acid esterification with n-butanol and benzaldehyde acetalization with ethylene glycol as model reactions. Furthermore, they can be reused several times without considerable loss of their activities.  相似文献   
72.
Composite materials based on a combination of biodegradable polymers and bioactive ceramics, including chitosan and hydroxyapatite are discussed as suitable materials for scaffold fabrication. Diopside is a member of bioactive silicates; it is a good choice for hard tissue engineering because of its biocompatibility with host tissue and high mechanical strength. Chitosan and hydroxyapatite were extracted from shrimp shell and bovine bone, respectively and diopside nanoparticles were prepared by the sol-gel method. The present study reports on a chitosan composite which was reinforced by hydroxyapatite and diopside; the scaffolds were fabricated by the freeze-drying method. The so-produced chitosan-hydroxyapatite-diopside (CS-HA-DP) scaffolds were further cross-linked using tripolyphosphate (TPP) to achieve enhanced mechanical strength. The ratios of the ceramic components in composites were 5-58-37, 10-55-35, and 15-52-33 (diopside-hydroxyapatite-chitosan, w/w %). The physicochemical properties of scaffolds were investigated using Fourier-transform infrared spectrometry (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) techniques. The effect of scaffolds composition on bioactivity and biodegradability were studied well. To investigate mechanical properties of samples, compression test was done. Results showed that the composite scaffold with 5% DP has the highest mechanical strength. The porosity of composites dropped from 92% to 76% by increasing the amount of DP. Cytocompatibility of the scaffolds was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) activity, and cell attachment studies using human osteoblast cells. Results demonstrated no sign of toxicity and cells were found to be attached to the pore walls within the scaffolds; moreover, results illustrated that the developed composite scaffolds could be a potential candidate for tissue engineering.  相似文献   
73.
Abstract

Few industries and undoubtedly no other resources have played such a significant role in modern world development as petroleum. Nowadays, access to geological formations bearing petroleum is slightly difficult due to most shallow reservoirs being close to the end of their economic life. Meanwhile, drilling operations have to get access to deeper reservoirs with more harsh conditions, leading to a considerable rise in instability potential. The consequences of failure are severe, and even simple bore hole instability may lead to the loss of millions of dollars in equipment and natural resources. The bore hole instabilities are not particular, and can happen in simple and very sophisticated drilling operations. In addition, these instabilities are not restricted to the drilling operation, and maybe happen even after many years that the completed well is subjected to the production. The authors intended to develop a new model for the collapse strength analysis of the casing design based on the geomechanical model and heaviest fluid used to drill the well and set the casing. This is based on the hypothesis that indeed the geomechanical in situ stresses and drilling fluid (used to drill the well and set the casing) in the annulus between the drilled well and casing exert radial stresses to the outside of the casing that may collapse the well. This survey leads to the easily computed equation to design the casing collapse strength based on the reality of the well and casing characteristics. This research is used and verified against a numerical model and field data in the South Pars gas field (Phases 6, 7, and 8 and well number SPDG-8) in the Persian Gulf and Cheshmeh Khosh oilfield in southwest of Iran. The results indicate that the proposed model is optimum and possesses satisfactory accuracy and precision.  相似文献   
74.
Superabsorbent hydrogels of chitosan-g-polyacrylamide with N,N′-methylene-bis-acrylamide as a crosslinker were prepared via UV irradiation in the absence of photoinitiator under homogeneous conditions. The product was characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy to confirm the formation of hydrogels. The transparent hydrogels have been observed to exhibit as much as 2987% swelling in acidic solution. In addition, the hydrogel which hydrolyzed for 6 h (0.24 × 103 min) can have a water uptake of 106 times its weight (5300% swelling for 0.5 g hydrogel). The effect of several variables such as time, temperature, pH, acrylamide/chitosan ratio, crosslinker amount, and different media was explored. Finally, the prepared hydrogel have been used in adsorption of Zn(II) ions from water with high removal efficiency (0.636 meq g−1 or 20.8 mg g−1) at pH = 7. The experimental data of the adsorption equilibrium from Zn(II) solution fit well with the pseudo-second-order model.  相似文献   
75.
In the present research work Taguchi method was applied to investigate the effect of reductive leaching parameters and mechanical pretreatment of ilmenite on nano synthetic rutile synthesis. The parameters such as ilmenite to acid mass ratio, ilmenite to iron powder mass ratio, milling time and initial leaching temperature were selected for optimization of experimental conditions. Consequently, the milling time was the most effective parameter on synthetic rutile preparation compared to the rest of the selected parameters. The optimum conditions obtained were as follows: milling in Argon atmosphere 40 min, initial reaction temperature 100 °C, ilmenite to hydrochloric acid mass ratio 1:9.55 and ilmenite to iron powder mass ratio 1:0.075. The characterization of products indicated that the prepared powder with milling time 40 min, temperature 100 °C, ilmenite to hydrochloric acid mass ratio 1:12.8 and ilmenite to iron powder mass ratio 1:0.05 had particles size of less than 100 nm. The analysis further confirmed that synthetic rutile nano powder had 91.1% TiO2. The nano powder obtained under the optimized condition had a BET surface area of 54.6 m2/g.  相似文献   
76.
Fiber‐reinforced elastomeric isolator (FREI) is a new generation of seismic isolation device in which steel plates are replaced by fiber reinforcement. The essential characteristic of the elastomeric isolator is a very large ratio of the vertical to horizontal stiffness. This is somehow provided in FREI by resembling to steel reinforced elastomeric isolators (SREI). In this work, a comparative experimental analysis is presented to evaluate the performance of fiber‐reinforced nanocomposite elastomeric isolator (FRNEI) with FREI. FRNEI was manufactured based on nanocomposite rubber compound. The results clearly indicate an increase of 20% in the ratio of the vertical to horizontal stiffness for FRNEI when compared with FREI. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   
77.
Schottky-barrier diode devices were fabricated in a sandwich configuration with poly(pyrrole-co-indole) copolymer semiconducting films prepared by electropolymerization. Effect of different dopants of ClO4 ?, BF4 ?, C7H7SO3 ? and [Fe(CN)6]3? on the electronic properties of the fabricated devices was followed using Ag, In, Al and Cu metal junctions. Current?Cvoltage and capacitance?Cvoltage characteristics were recorded for making a comparative evaluation of the electronic and junction properties of the devices. The electrical characteristics of the junctions were analyzed based on the standard thermionic emission theory. Polymer doped by ClO4 ? showed lower reverse saturation currents and ideality factor but higher potential barriers and rectification ratios. Effect of dopant ions and copolymerization on the optical band gaps (E g) of the films were investigated and the optical transmissions of the doped copolymer films were measured in the wavelength range of 250?C900?nm. It was shown that the energy gap of copolymers laid between those of corresponding homopolymers and polyindole (PIN) doped by [Fe(CN6)]?3 had E g less than that of polymer doped by other anions whereas E g of polypyrrole was independent of dopant ions. Also, the morphology of the polymeric films revealed the surface of the PIN doped with ClO4 ? was very smooth which created a good contact with indium metal.  相似文献   
78.
In the first section of this research, superparamagnetic nanoparticles (NPs) (Fe3 O4) modified with hydroxyapatite (HAP) and zirconium oxide (ZrO2) and thereby Fe3 O4 /HAP and Fe3 O4 /ZrO2 NPs were synthesised through co‐precipitation method. Then Fe3 O4 /HAP and Fe3 O4 /ZrO2 NPs characterised with various techniques such as X‐ray photoelectron spectroscopy, X‐ray diffraction, scanning electron microscopy, energy dispersive X‐ray analysis, Brunauer–Emmett–Teller, Fourier transform infrared, and vibrating sample magnetometer. Observed results confirmed the successful synthesis of desired NPs. In the second section, the antibacterial activity of synthesised magnetic NPs (MNPs) was investigated. This investigation performed with multiple microbial cultivations on the two bacteria; Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Obtained results proved that although both MNPs have good antibacterial properties, however, Fe3 O4 /HAP NP has greater antibacterial performance than the other. Based on minimum inhibitory concentration and minimum bactericidal concentration evaluations, S. aureus bacteria are more sensitive to both NPs. These nanocomposites combine the advantages of MNP and antibacterial effects, with distinctive merits including easy preparation, high inactivation capacity, and easy isolation from sample solutions by the application of an external magnetic field.Inspec keywords: nanocomposites, X‐ray chemical analysis, microorganisms, magnetic particles, scanning electron microscopy, precipitation (physical chemistry), nanomagnetics, X‐ray diffraction, X‐ray photoelectron spectra, nanoparticles, superparamagnetism, iron compounds, antibacterial activity, biomedical materials, nanomedicine, calcium compounds, nanofabrication, Fourier transform infrared spectra, magnetometers, zirconium compoundsOther keywords: antibacterial effects, antibacterial property, superparamagnetic nanoparticles, X‐ray photoelectron spectroscopy, X‐ray diffraction, X‐ray analysis, antibacterial activity, bactericidal concentration, S. aureus bacteria, Staphylococcus aureus, Escherichia coli, hydroxyapatite, coprecipitation method, scanning electron microscopy, energy dispersive X‐ray analysis, Brunauer‐Emmett‐Teller method, Fourier transform infrared spectroscopy, vibrating sample magnetometer, microbial cultivations, nanocomposites  相似文献   
79.
Muscle‐based biohybrid actuators have generated significant interest as the future of biorobotics but so far they move without having much control over their actuation behavior. Integration of microelectrodes into the backbone of these systems may enable guidance during their motion and allow precise control over these actuators with specific activation patterns. Here, this challenge is addressed by developing aligned carbon nanotube (CNT) forest microelectrode arrays and incorporating them into scaffolds for cell stimulation. Aligned CNTs are successfully embedded into flexible and biocompatible hydrogels exhibiting excellent anisotropic electrical conductivity. Bioactuators are then engineered by culturing cardiomyocytes on the CNT microelectrode‐integrated hydrogel constructs. The resulting cardiac tissue shows homogeneous cell organization with improved cell‐to‐cell coupling and maturation, which is directly related to the contractile force of muscle tissue. This centimeter‐scale bioactuator has excellent mechanical integrity, embedded microelectrodes, and is capable of spontaneous actuation behavior. Furthermore, it is demonstrated that a biohybrid machine can be controlled by an external electrical field provided by the integrated CNT microelectrode arrays. In addition, due to the anisotropic electrical conductivity of the electrodes provided by aligned CNTs, significantly different excitation thresholds are observed in different configurations such as the ones with electrical fields applied in directions parallel versus perpendicular to the CNT alignment.  相似文献   
80.
The current work deals with the effects of incorporation of silver nanoparticles on the antibacterial and the thermal properties of a flexographic ink. The stable and uniform dispersion of silver nanoparticles in the ink were confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The thermal properties of the pure and nanoparticle loaded ink films were also evaluated using TGA and DSC techniques. The results from this study proved acceptable dispersion characteristics, wherein, the flexographic ink showed a significant antibacterial activity against Gram-positive and Gram-negative bacteria  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号