首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   22篇
  国内免费   4篇
电工技术   4篇
化学工业   86篇
金属工艺   19篇
机械仪表   9篇
建筑科学   2篇
能源动力   16篇
轻工业   24篇
无线电   31篇
一般工业技术   97篇
冶金工业   17篇
原子能技术   1篇
自动化技术   65篇
  2023年   6篇
  2022年   18篇
  2021年   9篇
  2020年   15篇
  2019年   10篇
  2018年   8篇
  2017年   17篇
  2016年   15篇
  2015年   11篇
  2014年   28篇
  2013年   47篇
  2012年   34篇
  2011年   30篇
  2010年   17篇
  2009年   18篇
  2008年   24篇
  2007年   9篇
  2006年   9篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有371条查询结果,搜索用时 46 毫秒
81.
In the present study, microstructure and texture evolution in an austenitic Fe-28 wt pct Mn-0.28 wt pct C TWIP steel in the range between 10 and 80 pct reduction by cold rolling were systematically analyzed. The formation of the observed microstructural features occurred in three different stages: I (10 to 20 pct)—mainly slip lines, grain elongation, and formation of few twin-matrix lamellae; II (30 to 50 pct)—severe increase of the volume fraction of twins, alignment of twins with the rolling plane, and formation of microshear bands; and III (60 to 80 pct)—further alignment of twins, evolution of a herring bone structure, and macroshear bands. In contrast to most f.c.c. metals, the transition from Copper- to Brass-type texture occurred at low strain levels (30 pct). This behavior is attributed to the early formation of deformation twins in the material and can be related to the SFE of this high manganese steel. At higher reduction levels, microscopic (≥40 pct) and macroscopic shear band formation (≥60 pct) contributed to the increase of randomly oriented grains, mainly at the expense of the Brass component. Furthermore, the formation of the Goss component and of the 〈111〉//ND fiber (γ) is attributed to severe twin formation.  相似文献   
82.
The arc sound was found to be strongly related to both process parameters and weld quality, like voltage and current signals, in gas metal arc welding. In this investigation, the acquired welding arc sound signal along with current and voltage signals were analyzed in time domain as well as frequency domain to correlate them with the various process parameters and metal transfer modes. The arc sound of continuous as well as pulsed gas metal arc welding at various process parameters was also compared. A major variation of auxiliary arc sound frequency peaks was observed due to change of pulse shape as evidenced by frequency domain analysis. The arc sound was also used to detect welding defects.  相似文献   
83.
Today, we stand at the threshold of exploring carbon nanotube (CNT) based conducting polymer nanocomposites as a new paradigm for the next generation multifunctional materials. However, irrespective of the reported methods of composite preparation, the use of CNTs in most polymer matrices to date has been limited by challenges in processing and insufficient dispersability of CNTs without chemical functionalization. Thus, development of an industrially feasible process for preparation of polymer/CNT conducting nanocomposites at very low CNT loading is essential prior to the commercialization of polymer/CNT nanocomposites. Here, we demonstrate a process technology that involves in situ bulk polymerization of methyl methacrylate monomer in the presence of multi‐wall carbon nanotubes (MWCNTs) and commercial poly(methyl methacrylate) (PMMA) beads, for the preparation of PMMA/MWCNT conducting nanocomposites with significantly lower (0.12 wt% MWCNT) percolation threshold than ever reported with unmodified commercial CNTs of similar qualities. Thus, a conductivity of 4.71 × 10?5 and 2.04 × 10?3 S cm?1 was achieved in the PMMA/MWCNT nanocomposites through a homogeneous dispersion of 0.2 and 0.4 wt% CNT, respectively, selectively in the in situ polymerized PMMA region by using 70 wt% PMMA beads during the polymerization. At a constant CNT loading, the conductivity of the composites was increased with increasing weight percentage of PMMA beads, indicating the formation of a more continuous network structure of the CNTs in the PMMA matrix. Scanning and transmission electron microscopy studies revealed the dispersion of MWCNTs selectively in the in situ polymerized PMMA phase of the nanocomposites. Copyright © 2012 Society of Chemical Industry  相似文献   
84.
85.
The optimum length of a monolith tube is one for which near-hundred percent conversion is attained, and at the same time, the catalyst over the entire length of the tube is utilized. In practice, the length is adjusted by stacking monolith plugs end-to-end. In this study, the repercussions of such a practice are investigated numerically with the goal to determine if a tube of length 2L demonstrates the same behavior as two tubes of length L each, stacked end-to-end. Catalytic combustion of methane–air mixture on a platinum catalyst is considered. The studies are conducted using a multi-step reaction mechanism involving 24 surface reactions between 19 species. Two different materials are considered for the walls of the monolith tube, namely silicon carbide and cordierite. Both steady state and transient simulations are performed. Results indicate that the ignition and blowout limits can be significantly different between split and continuous tubes when the wall is made up of a high thermal conductivity material, such as silicon carbide. For steady state combustion, for both wall materials, the point of attachment of the flame to the wall is altered by splitting the tube—the effect being more pronounced for silicon carbide and at relatively high Reynolds numbers. These results imply that axial heat conduction, or lack thereof due to thermal contact resistance, through the walls of the monolith results in thermal non-equilibrium between the solid and fluid phase, and subsequently affects ignition and flame stability in catalytic combustion.  相似文献   
86.
We have investigated the electrical and optical properties of Ba(HfxTi1 − x)O3 (x = 0, 0.1, 0.2, 0.3, 0.4) (BHT) thin films deposited on platinized silicon and fused quartz substrates. Analyses of the X-ray diffraction patterns reveal that with the increase in Hf contents there is a systematic increase of the lattice constants of BHT films. Irrespective of the measurement frequencies the dielectric constants was found to be systematically decreased, whereas their frequency dispersion was found to be reduced with increasing Hf contents. The leakage current data measured using a metal-insulator–metal configuration reveal that the Schottky emission is the dominant leakage current mechanism in these films. BHT films, deposited on transparent fused quartz substrates, were also characterized in terms of their optical properties. For this purpose the transmittance of the undoped as well as Hf doped barium titanate thin films was measured as a function of wavelength in the range of 290 nm to 800 nm. The transmission spectra were analysed to estimate the wavelength dependence of the refractive indices/extinction coefficients as well as the variation of optical band gap of these films. With the increase of Hf contents, a systematic increase of the band gap [from 3.65 eV (undoped film) to 4.15 eV (40 at.% Hf doped barium titanate film)] was observed. The reduction of the leakage current with increasing hafnium substitution is discussed on the basis of an increasing Schottky barrier height and due to a simultaneous increase in the band gap of the material.  相似文献   
87.
This piece of contribution highlights the profound effect of unique mesoscale morphology of tailor made nanosilica assembly (SS‐Silica), synthesized by sol–gel route, on the mechanical and dynamic rheological properties of platinum catalyzed addition‐cured silicone elastomers. While commercial colloidal nanosilica (CS Silica) is used as the control nanofiller representing particulate morphology, the tailor‐made SS‐Silica having highly percolated network structure offers 10‐fold increase in storage modulus of the uncured reactive PDMS precursor nanocomposite with stable dynamic rheological behavior and more than 180% enhancement in tensile strength of resulting liquid silicone rubber (LSR) produced on curing, as compared to colloidal silica of commercial origin. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40125.  相似文献   
88.
Organically modified nanoclays have been reported to play the role of a compatibilizer for immiscible polymer blends. However, the mechanism of compatibilization by nanoclay has been reported differently. In this work, we investigated the exact mechanism of compatibilization of nanoclay in immiscible polystyrene (PS)/poly(methyl methacrylate) (PMMA) blend in the presence of sodium-montmorillonite (Na-MMT) through selective dispersion of clay in the matrix phase. Through a detailed investigation of the morphology of PS/PMMA/Na-MMT blend nanocomposites, the plausible mechanism behind the compatibilization effect of clay in immiscible blends has been proposed.  相似文献   
89.
Aqueous peroxotitanate complex (PTC) precursor was used to obtain phase pure anatase nanocrystaline TiO2. A wet chemical synthesis route was used in which number of aqueous solutions of PTC was refluxed for different time intervals to study the effect of reflux time on final product. Several characterization techniques were used such as DSC–TGA, XRD, UV–Vis, SEM and TEM. The study revealed that there is a significant influence of reflux time on structural, morphological and optical properties of TiO2. As reflux time of PTC has been increased, crystallite size found to be increased. Also, surface morphology of TiO2 nanoparticles changed from ‘hexagonal shape’ to ‘rice like’ shape and further in ‘ellipsoid rod like’ shape. Optical band gap energy and refractive index incurred to be altered with respect to reflux time of PTC. Detailed study of refluxed PTC solutions has been reported for the first time in the literature.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号