首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   38篇
  国内免费   5篇
电工技术   12篇
化学工业   144篇
金属工艺   14篇
机械仪表   4篇
建筑科学   4篇
矿业工程   1篇
能源动力   31篇
轻工业   21篇
水利工程   1篇
石油天然气   6篇
无线电   64篇
一般工业技术   121篇
冶金工业   8篇
原子能技术   4篇
自动化技术   110篇
  2024年   1篇
  2023年   15篇
  2022年   19篇
  2021年   24篇
  2020年   37篇
  2019年   26篇
  2018年   33篇
  2017年   22篇
  2016年   16篇
  2015年   16篇
  2014年   31篇
  2013年   48篇
  2012年   19篇
  2011年   34篇
  2010年   34篇
  2009年   22篇
  2008年   27篇
  2007年   14篇
  2006年   9篇
  2005年   15篇
  2004年   1篇
  2003年   6篇
  2002年   6篇
  2001年   8篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   1篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1965年   1篇
排序方式: 共有545条查询结果,搜索用时 46 毫秒
31.
This study reports preparation of glass composition (54.50 wt.%) SiO2, (10.80 wt.%) B2O3, (14.20 wt.%) Na2O, (1.20 wt.%) K2O, (6.00 wt.%) CaO, (4.00 wt.%) Fe2O3 and (9.30 wt.%) TiO2 by melt quenching method using direct microwave heating and conventional resistive heating. Study of dielectric loss factor of the glass as function of temperature illustrated increasing loss factor above 370 ℃, 550 ℃, 650 ℃ and 900 ℃, indicating enhanced microwave absorption by the glass at above these temperatures. Chemical analysis results of both the glasses depicted more volatilization loss of volatile ingredients in conventional heating. The study of chemical durability was performed from leachate analysis describing less leaching of Na2O, K2O and other constituents from glass melted in microwave furnace. Glass transition temperatures (Tg) were found to be 576.3 ℃ and 569.5 ℃ for glass melted in conventional and microwave heating route, respectively. Laboratory experiment of glass melting utilizing microwave energy as an alternate heating source demonstrated 70%-75% electrical power saving.  相似文献   
32.
BACKGROUND: The technical properties of polyolefinic thermoplastic elastomer (TPE) systems can be modified significantly using fillers like nano‐silica. Controlled irradiation can potentially be an effective way of tailoring the technical properties of such nano‐silica‐filled TPE systems. RESULTS: The effect of controlled electron‐beam irradiation on the properties of a pristine silica nanoparticle‐filled model low‐density polyethylene/ethylene–(vinyl acetate) (LDPE/EVA) TPE system is explored in this paper. The morphology of such a filled system was investigated using scanning electron microscopy (SEM) and field‐emission SEM. The dispersion of silica particles was analysed using transmission electron microscopy which clearly indicates that at low loading a fine dispersion of silica occurs in the polymer matrix. Swelling studies and Fourier transform infrared analyses indicate the occurrence of a favourable EVA–silica interaction. On the whole, it is observed that electron‐beam irradiation induces a high degree of reinforcement in all the silica‐filled samples through interfacial crosslinking as well as controlled crosslinking in the two polymer phases. In a few samples the processing characteristics are remarkably preserved following concurrent nano‐silica reinforcement and irradiation, while the technical properties of TPE systems, including set, solvent swelling and mechanical properties, are improved. However, the improvement in properties is a strong function of sequence of addition of filler in the LDPE/EVA blends. CONCLUSION: The green technique studied can be potentially extended for the improvement of the technical properties of conventional TPE systems. Copyright © 2009 Society of Chemical Industry  相似文献   
33.
Casual message-logging protocols have several attractive properties: they introduce no blocking, send no additional messages over those sent by the application, and never create orphans. Causal message logging, however, does require the casual effects of the deliveries of messages to be tracked. The information concerning causality tracking is piggybacked on application messages, and the amount of such information can become large. In this paper we study the cost of tracking causality in causal message-logging protocols. One can track causality as accurately as possible, but to do so requires piggybacking a considerable amount of additional information. One can reduce the amount of piggybacked information on each message by reducing the accuracy of causality tracking. But then, causal message logging may piggyback the reduced amount of information on more messages. We specify six different methods of tracking causality, each representing a natural choice based on the specification of causal message logging. We describe how these six methods can be implemented and compare them in terms of how large of a piggyback load they impose. This load depends on the application that is using causal message logging. We characterize some applications for which a given method has the smallest piggyback load, and study using simulation the size of the piggyback load for two different models of applications. Received: July 1999 / Accepted: July 2001  相似文献   
34.
A theoretical study of non-isothermal superimposed flow of two polymer melts in wire coating co-extrusion dies has been carried out. Numerical methods have been employed to solve the coupled momentum- and energy-balance equations. Various combinations of three polymers—namely, high density polyethylene (HDPE), polystyrene (PS) and low density polyethylene (LDPE) have been studied and least squares curve fitted quadratic polynomials have been used for constitutive equations for all three polymers in non-Newtonian high shear rate regions. A multitude of thermal and mechanical boundary conditions can be treated by this algorithm. It was found that temperature and velocity profiles in the die depend significantly on the arrangement of the polymers. Maximum temperature rise has been noted to increase sharply with wire velocity but it can be reduced by increasing the die radius. When the thickness of the outer layer is increased from zero, the shear stress at the wall undergoes a dramatic change (if the viscosities of the polymers are different) at small values of the flow rate ratio and it reaches an asymptotic value at large values of flow rate ratio. It was also found that viscosity ratio at the interface can be reduced by changing the initial temperatures of the liquids. It was observed in some cases that large errors in the calculation of rheological and thermal variables for this problem can be made if temperature rise due to viscous dissipation is not considered.  相似文献   
35.
Clinical diagnostics and genomic research often require performing numerous genetic tests. While microfluidic devices provide a low-cost alternative to such demands, integrated microfluidic devices are fabricated using expensive technology not always affordable for single use. However, carryover cross-contamination (CXC) concerns (i.e. either false positive or false negative PCR data) in PCR chips prevent reuse, defying much of the advantages of miniaturized systems developed using expensive MEMS processing. In this work, we present an integrated and reusable PCR–CE glass microfluidic chip capable of multi-chamber PCR and sequential CE, with emphasis on a unique chip reusability approach to avoid CXC. For reliable PCR, the surface of the chamber is re-configured from its virgin hydrophilic (CA < 20°) to hydrophobic (CA > 110°) by silanization. To then extend this silanization method as a chip reusability technique, the silanization coating is ‘stripped and re-silanized’ (SRS) to create a fresh coating prior to each successive PCR run. Experimental confirmation of the effectiveness of SRS method in avoiding the CXC is demonstrated using plasmid DNA and HIV-1 infected DNA samples. We also present passive plug microvalves incorporated in the chip to enable fluid/vapor retention during the PCR and controlled fluid flow from the PCR chamber to the CE section for further analysis.  相似文献   
36.
In this paper, we have proposed a novel scheme for the extraction of textual areas of an image using globally matched wavelet filters. A clustering-based technique has been devised for estim ating globally matched wavelet filters using a collection of groundtruth images. We have extended our text extraction scheme for the segmentation of document images into text, background, and picture components (which include graphics and continuous tone images). Multiple, two-class Fisher classifiers have been used for this purpose. We also exploit contextual information by using a Markov random field formulation-based pixel labeling scheme for refinement of the segmentation results. Experimental results have established effectiveness of our approach.  相似文献   
37.
38.
Total site integration offers energy conservation opportunities across different individual processes and also to design as well as to optimize the central utility system. In total site integration of the overall process, indirect integration with intermediate fluids or through a central utility system are preferred as it offers greater advantages of flexibility and process control but with reduced energy conservation opportunities. To achieve the maximum possible indirect integration between processes assisted heat transfer, i.e., heat transfer outside the region between process pinch points, plays a significant role. A new concept is proposed in this paper for total site integration by generating a site level grand composite curve (SGCC). Proposed SGCC targets the maximum possible indirect integration as it incorporates assisted heat transfer. In this paper, a methodology is proposed to estimate the cogeneration potential at the total site level, utilizing the concept of multiple utility targeting on the SGCC. The proposed methodology to estimate the cogeneration potential is simple and linear as well as utilizes the rigorous energy balance at each steam header.  相似文献   
39.
Influence of organic modifying agent of clay on dispersion, distribution, hybrid microstructure formation, and associated performance properties of epoxidized natural rubber‐based composites was evaluated. Binary and ternary composites of carbon black (CB) and two organomodified layered silicates (i.e., nanomer I30E and Cloisite 30B) were prepared and characterized based on small angle X‐ray scattering, transmission electron microscopy, hydrodynamic swelling, tensile measurement, and dynamic mechanical analyses. Greater extent of exfoliation and “nanounit” formation was noted in ternary composites containing nanomer I30E, which was reflected in higher interfacial roughness (ds = 2.82) and lower radius of gyration (Rg = 205 Å). Morphological observations suggested higher nanomer I30E–CB interactions than that of Cloisite 30B–CB. The interplatelet distance in Cloisite 30B (d = 1.83 nm) stacks was lower than that of nanomer I30E (d = 2.26 nm). These two factors jointly contributed in higher breakdown of nanomer I30E stacks by CB than that of Cloisite 30B stacks. Greater exfoliation and nanounit formation in I30E–CB‐filled nanocomposite was also reflected in increased degree of crosslinking (n = 20 × 10?5%), tensile modulus/strength, half height width of damping peak (20.3°C), and filler effectiveness (C = 0.33). POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   
40.
The temperature–enthalpy (TH) diagram of a distillation column at practical near-minimum thermodynamic condition (PNMTC) or the column grand composite curve (CGCC) is a useful representation for energy targeting studies and may be generated from a converged simulation of a base-case column design. The calculation procedure for the CGCC involves determination of the net enthalpy deficit at each stage by generating envelopes from either the condenser end (top-down approach) or the reboiler end (bottom-up approach). However, the values calculated by the two approaches differ for stages with feeds because existing procedures for CGCC generation do not consider the enthalpy balances at the feed stages. In fact, the net enthalpy deficits at feed stages calculated by both approaches are erroneous even for the simplest case of binary distillation. A feed stage correction (FSC) that rigorously considers the mass and enthalpy balance equations at feed stages is proposed in this work to resolve the discrepancy. Instead of assuming that the compositions obtained from the converged simulation for a feed stage will remain unchanged at PNMTC, the pinched compositions for the feed are determined by the intersection of the equilibrium curve and the feed q-line. Rather than perform an additional flash calculation to establish the pinched feed compositions, a quadratic approximation is developed here for column targeting purposes by assuming the relative volatility obtained from the simulation to remain constant in the neighborhood of the feed stage. The proposed FSC ensures that the CGCC is identical whether the calculations are performed by the top-down approach or the bottom-up approach. The effect of the FSC on the targets for energy conservation by reflux modification, feed conditioning, and introduction of side reboilers/condensers is discussed. As the energy target for reflux modification is determined by the CGCC pinch which typically occurs at or close to the feed location, the significance of the FSC on the reflux modification target is highlighted through several case studies including a complex column featuring multiple feeds and consequently multiple pinch points. The CGCCs for these case studies are generated by a computer program based on the FSC and a single analytical equation for the calculation of the net enthalpy deficits that allows every stage to have a feed, liquid product, vapor product, and side exchanger. The studies show that the reflux modification targets may be erroneous in many cases, if the FSC is ignored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号