Multimedia Tools and Applications - In this paper, an improved wavelet based medical image watermarking algorithm is proposed. Initially, the proposed technique decomposes the cover medical image... 相似文献
In this work, we derive the closed-form expressions of channel capacity with maximal ratio combining, equal gain combining and selection combining schemes under different transmission policies such as optimal power and rate adaptation, optimal rate adaptation, channel inversion with fixed rate (CIFR) and truncated CIFR. Various approximations to the intractable integrals have been proposed using methods such as Holtzman and Gauss–Hermite approximations and simpler expressions are suggested. Moreover, as an application, the channel capacity of lognormally distributed fading channel in the interference-limited environment is discussed. The obtained closed-form expressions have been validated with the exact numerical results.
New benchmarks are used to test two classes of discretization methods available in the literature to solve bivariate population balance equations (2-d PBEs), and the applicability of these mean-field equations to finite size systems. The new benchmarks, different from the extensions of their 1-d counterparts, relate to prediction of kinetics of mixing in particle phase under: (i) pure aggregation of particles, called aggregative mixing, and (ii) simultaneous breakup and coalescence of drops. The discretization methods for 2-d PBEs, derived from the widely used 1-d solution methods, are first classified into two classes. We choose one representative method from each class. The results show that the extensions based on minimum consistency of discretization perform quite well with respect to both the new and the old benchmarks, in comparison with the geometrical extensions of 1-d methods. We next revisit aggregative mixing using Monte-Carlo simulations. The simulations show that (i) the time variation of the extent of mixing in finite size systems has power law scaling with the system size, and (ii) the mean-field PBEs fail to capture the evolution of mixing for reduced population of particles at long times. The sum kernel limits the applicability of PBEs to substantially larger particle populations than that seen for the constant kernel. Interestingly, these populations are orders of magnitude larger than those at which the PBEs fail to capture the evolution of total particle population correctly. 相似文献
The frequency dependent ac conduction mechanism in 4,4′,4″-tris(N-3-methylphenyl-N-phenylamine)triphenylamine (m-MTDATA) has been studied as a function of applied bias and temperature. The Cole–Cole plot shows a slightly depressed semicircle indicating Debye type relaxation. This result has been explained by an equivalent circuit of the device designed as a two parallel resistor and capacitance network in series with contact resistance. The ac conduction studies under dc bias for hole only devices shows an increase in device conductivity with the increase in bias. The variation of bulk resistance with applied bias indicates Space Charge Limited Conduction (SCLC) mechanism for hole conduction. The hole mobility of the material has also been evaluated from SCLC as 8.859 × 10?6 cm2/V s. The temperature dependent impedance studies show two activation energies indicating two different phase of the material with a phase transition at 235 K. 相似文献
Lactic acid fermentation of pearl millet flour decreased its phytic acid content and increased extractable phosphorus. Fermentation at 40 and 50°C for 72 h or longer eliminated phytic acid almost completely; extractable phosphorus was more than doubled. Lower temperatures (20 and 30°C) were less effective. The changes in concentration of phytic acid and extractable phosphorus may be attributed partly to phytase activity inherent in pearl millet flour. 相似文献
In this research study, a comprehensive effort has been made to functionalize silicon carbide particles using the acidic oxidation with nitric acid to obtain homogeneous stabilized distribution of activated SiC particles within a polymer matrix, and develop functionalized silicon carbide (f-SiC) particle reinforced polyvinyl alcohol (PVA) based cross-linked composite. After fabrication of functionalized silicon carbide (f-SiC) particle reinforced polyvinyl alcohol based cross-linked composite with varying f-SiC weight percentages of PVA (0%, 1%, 2%, 3%, and 4%) were placed to various investigations. Processed samples are initially examined based by the physical tests (water absorption tests), followed by mechanical test (tensile test) and then micro-structural tests (scanning electron microscopy). Lastly, thermal tests were also concluded which involved the dynamic mechanical, differential thermal and thermo gravimetric analysis. The cross-linked polyvinyl alcohol-based composite with 2 weight % of f-SiC content is observed to be the superlative of all the compositions under this research study that was confirmed by the mechanical and micro-structural tests. This composite material shows high storage modulus with visco-elastic behavior, therefore, the material can be utilized to diminish the transmission of noise, as a shock absorber and vibration isolator. 相似文献
ZnO–SnO2 nanocubes were used as promising material for efficient sensing of p-nitrophenol and faster photocatalytic degradations of dyes like methyl orange (MO), methylene Blue (MB) and acid orange 74 (AO74). ZnO–SnO2 nanocubes were prepared by the facile solution process at 50 °C using Zn(NO3)2·6H2O and SnCl2·2H2O as a precursor in the presence of ethylenediammine. The synthesized material was examined for its morphological, structural, crystalline, optical, vibrational, and compositional studies by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy. FESEM studies revealed the formation of well-defined ZnO–SnO2 nanocubes where the structural examinations revealed the formation of a crystalline tetragonal rutile phase for SnO2 with some crystal sites doped with Zn. The as-synthesized nanocubes were explored for their photocatalytic activities towards three different dye viz. MO, MB, and AO74. Practically, complete degradation of AO74 was seen within 4 minutes of photo-irradiation in the presence of 0.05 g ZnO–SnO2 nanocubes. However, 97.17% and 41.63% degradations were observed for MB and MO within 15 and 60 minutes, respectively. All the dye degradation processes followed the pseudo-first-order kinetic model. Moreover, the as-synthesized nanocubes were utilized to fabricate highly sensitive and selective fluorescent chemical sensor for the detection of p-nitrophenol (PNP). ZnO–SnO2 nanocubes showed a very low detection limit of 4.09 μM for the detection of PNP as calculated according to the 3σ IUPAC criteria. Further, the as-synthesized ZnO–SnO2 nanotubes were found to be highly selective for p-nitrophenol as compared to the other two isomers. 相似文献