首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2845篇
  免费   209篇
  国内免费   5篇
电工技术   41篇
综合类   2篇
化学工业   684篇
金属工艺   73篇
机械仪表   128篇
建筑科学   14篇
能源动力   95篇
轻工业   125篇
水利工程   6篇
无线电   414篇
一般工业技术   515篇
冶金工业   747篇
原子能技术   45篇
自动化技术   170篇
  2024年   4篇
  2023年   38篇
  2022年   62篇
  2021年   80篇
  2020年   61篇
  2019年   77篇
  2018年   77篇
  2017年   81篇
  2016年   101篇
  2015年   73篇
  2014年   108篇
  2013年   168篇
  2012年   139篇
  2011年   184篇
  2010年   111篇
  2009年   136篇
  2008年   126篇
  2007年   95篇
  2006年   102篇
  2005年   59篇
  2004年   61篇
  2003年   75篇
  2002年   65篇
  2001年   43篇
  2000年   43篇
  1999年   61篇
  1998年   257篇
  1997年   154篇
  1996年   111篇
  1995年   46篇
  1994年   55篇
  1993年   37篇
  1992年   9篇
  1991年   17篇
  1990年   12篇
  1989年   13篇
  1988年   9篇
  1987年   9篇
  1986年   14篇
  1985年   8篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   12篇
  1977年   16篇
  1976年   35篇
  1975年   2篇
  1972年   1篇
  1955年   1篇
排序方式: 共有3059条查询结果,搜索用时 15 毫秒
81.
We investigated the effect of two different quantum well (QW) structures having different indium contents on the optical performance of fully packaged GaN-based light-emitting diodes (LEDs). Dual-spectrum QW LEDs exhibit ~4% higher external quantum efficiency (at 350 mA) than single-spectrum QW LEDs. However, the two types of LEDs exhibit similar efficiency droop behavior. For both types of LEDs, the output power decreases with increasing junction temperature. When the junction temperature exceeds 70°C, the dual-spectrum QW LEDs exhibit lower output power than the single-spectrum QW LEDs. The wavelength dependence of the output power (at 350 mA) of single-spectrum QW LEDs shows that the LEDs with shorter wavelengths experience more rapid optical degradation than the LEDs with longer wavelengths. Based on the wavelength- and junction-temperature-dependent output power, the droop behavior of the dual-spectrum QW LEDs is described and discussed.  相似文献   
82.
We demonstrate the versatility of the threshold voltage control for organic thin-film transistors (OTFTs) based on formation of discontinuous pn-heterojunction on the active channel layer. By depositing n-type dioctyl perylene tetracarboxylic diimide molecules discontinuously onto base p-type pentacene thin films (the formation of the discontinuous pn-heterojunction), a positive shift of the threshold voltage was attained which enabled realizing a depletion-mode transistor from an original enhancement-mode pristine pentacene transistor. Careful control of the threshold voltage based on this method led assembling a depletion-load inverter comprising a depletion-mode transistor and an enhancement-mode transistor connected in series that yielded tunable signal inversion voltage approaching 0 V. In addition, the tunability could be applied to improve the program/erase signal ratio for non-volatile transistor memories by more than 4 orders of magnitude compared to reference memory devices made of pristine pentacene transistors.  相似文献   
83.
For the fine‐pitch application of flip‐chip bonding with semiconductor packaging, fluxing and hybrid underfills were developed. A micro‐encapsulated catalyst was adopted to control the chemical reaction at room and processing temperatures. From the experiments with a differential scanning calorimetry and viscometer, the chemical reaction and viscosity changes were quantitatively characterized, and the optimum type and amount of micro‐encapsulated catalyst were determined to obtain the best pot life from a commercial viewpoint. It is expected that fluxing and hybrid underfills will be applied to fine‐pitch flip‐chip bonding processes and be highly reliable.  相似文献   
84.
A novel, maskless, low‐volume bumping material, called solder bump maker, which is composed of a resin and low‐melting‐point solder powder, has been developed. The resin features no distinct chemical reactions preventing the rheological coalescence of the solder, a deoxidation of the oxide layer on the solder powder for wetting on the pad at the solder melting point, and no major weight loss caused by out‐gassing. With these characteristics, the solder was successfully wetted onto a metal pad and formed a uniform solder bump array with pitches of 120 µm and 150 µm.  相似文献   
85.
86.
87.
Osteoarthritis (OA) has generally been introduced as a degenerative disease; however, it has recently been understood as a low-grade chronic inflammatory process that could promote symptoms and accelerate the progression of OA. Current treatment strategies, including corticosteroid injections, have no impact on the OA disease progression. Mesenchymal stem cells (MSCs) based therapy seem to be in the spotlight as a disease-modifying treatment because this strategy provides enlarged anti-inflammatory and chondroprotective effects. Currently, bone marrow, adipose derived, synovium-derived, and Wharton’s jelly-derived MSCs are the most widely used types of MSCs in the cartilage engineering. MSCs exert immunomodulatory, immunosuppressive, antiapoptotic, and chondrogenic effects mainly by paracrine effect. Because MSCs disappear from the tissue quickly after administration, recently, MSCs-derived exosomes received the focus for the next-generation treatment strategy for OA. MSCs-derived exosomes contain a variety of miRNAs. Exosomal miRNAs have a critical role in cartilage regeneration by immunomodulatory function such as promoting chondrocyte proliferation, matrix secretion, and subsiding inflammation. In the future, a personalized exosome can be packaged with ideal miRNA and proteins for chondrogenesis by enriching techniques. In addition, the target specific exosomes could be a gamechanger for OA. However, we should consider the off-target side effects due to multiple gene targets of miRNA.  相似文献   
88.
Lysophosphatidylserine (LysoPS) is an amphipathic lysophospholipid that mediates a broad spectrum of inflammatory responses through a poorly characterized mechanism. Because LysoPS levels can rise in a variety of pathological conditions, we sought to investigate LysoPS’s potential role in airway epithelial cells that actively participate in lung homeostasis. Here, we report a previously unappreciated function of LysoPS in production of a mucin component, MUC5AC, in the airway epithelial cells. LysoPS stimulated lung epithelial cells to produce MUC5AC via signaling pathways involving TACE, EGFR, and ERK. Specifically, LysoPS- dependent biphasic activation of ERK resulted in TGF-α secretion and strong EGFR phosphorylation leading to MUC5AC production. Collectively, LysoPS induces the expression of MUC5AC via a feedback loop composed of proligand synthesis and its proteolysis by TACE and following autocrine EGFR activation. To our surprise, we were not able to find a role of GPCRs and TLR2, known LyoPS receptors in LysoPS-induced MUC5AC production in airway epithelial cells, suggesting a potential receptor-independent action of LysoPS during inflammation. This study provides new insight into the potential function and mechanism of LysoPS as an emerging lipid mediator in airway inflammation.  相似文献   
89.
The effect of coal size (0.73–1.03 mm), excess air ratio (1.0–1.4), operating bed temperature (750–900‡C), coal feeding rate (1–3 kg/h), and coal recycle rate (20–40 kg/h) on combustion efficiency, temperature profiles along the bed height and flue gas composition have been determined in a bubbling and circulating fluidized bed combustor (7.8 cm-ID x 2.6 m-high). Combustion efficiency increases with increasing excess air ratio and operating bed temperature and it decreases with increasing particle size in the bubbling and circulating fluidzing beds. In general, temperature profiles and combustion efficiency are more uniform and higher in a circulating bed than those in bubbling bed. Combustion efficiency also increases with increasing recycle rate of unburned coal in the circulating bed. The ratio of CO/CO2 of flue gas decreases with increasing bed temperature and excess air ratio, whereas the ratio of O2(CO + CO2) decreases with bed temperature in both bubbling and circulating fluidized beds.  相似文献   
90.
We produced hierarchically branched Fe2O3 nanorods on a Sb:SnO2 transparent conducting oxide (TCO) nanobelt structure as photoanodes for photoelectrochemical water splitting. Single-crystalline SnO2 nanobelts (NBs) surrounded by Fe2O3 nanorods (NRs) were synthesized by thermal evaporation, then underwent chemical bath deposition and annealing. When Fe2O3 was crystallized by annealing, Sn was diffused from SnO2 NBs and incorporated to Fe2O3 NRs, which was confirmed through Energy dispersive spectroscopy. Unlike previous high temperature sintering (∼800 °C), Sn doped hematite NRs were obtained at a low temperature (∼650 °C). This occurred since SnO2 NBs directly connected to Fe2O3 NRs are an abundant source of Sn dopant. The 3D hematite NRs on SnO2 NBs annealed at 650 °C produce a photocurrent density of 0.88 mA/cm2 at 1.23 V vs. RHE, which is 3 times higher than that of hematite NRs on a fluorine doped tin oxide (FTO) glass substrate annealed at the same temperature. The enhanced photocurrent is attributed to the improved electrical conductivity of Fe2O3 NRs by Sn doping, the efficient electron transport pathway by TCO nanowire and the increased surface area by hierarchically branched structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号