首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3559篇
  免费   222篇
  国内免费   4篇
电工技术   41篇
综合类   1篇
化学工业   693篇
金属工艺   72篇
机械仪表   128篇
建筑科学   14篇
能源动力   95篇
轻工业   132篇
水利工程   6篇
石油天然气   4篇
无线电   414篇
一般工业技术   516篇
冶金工业   1453篇
原子能技术   45篇
自动化技术   171篇
  2024年   5篇
  2023年   38篇
  2022年   62篇
  2021年   79篇
  2020年   61篇
  2019年   78篇
  2018年   77篇
  2017年   82篇
  2016年   102篇
  2015年   74篇
  2014年   108篇
  2013年   169篇
  2012年   140篇
  2011年   185篇
  2010年   114篇
  2009年   137篇
  2008年   127篇
  2007年   95篇
  2006年   102篇
  2005年   62篇
  2004年   59篇
  2003年   80篇
  2002年   65篇
  2001年   43篇
  2000年   43篇
  1999年   78篇
  1998年   503篇
  1997年   293篇
  1996年   187篇
  1995年   101篇
  1994年   81篇
  1993年   89篇
  1992年   11篇
  1991年   28篇
  1990年   16篇
  1989年   31篇
  1988年   25篇
  1987年   27篇
  1986年   18篇
  1985年   20篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1980年   6篇
  1978年   2篇
  1977年   22篇
  1976年   43篇
  1975年   2篇
  1955年   1篇
排序方式: 共有3785条查询结果,搜索用时 15 毫秒
41.
The ((Bi3.5La0.5)Ti3O12(BLT) thin-films used in this study were fabricated on a Pt(111)/SiO2/Si(100) substrate by a Liquid Source Misted Chemical Deposition (LSMCD) technique. X-ray diffraction patterns showed that the BLT films were crystallized and no other phases were observed when annealed above 650 ‡C. Grain size and remnant polarizations increased with increase in the annealing temperature, while leakage current densities decreased. The remnant polarizations (Pr) increased from 2.0 to 4.8 and 19.0 μC/cm2 with increase in the annealing temperature from 650 to 700 and 750 ‡C, respectively. The BLT films annealed at 700 ‡C in O2 showed a good fatigue resistance of reduced polarization by 10% after 109 switching cycles when 9 V of bipolar voltage was applied at a frequency of 40 kHz.  相似文献   
42.
To design a supercritical fluid extraction process for the separation of bioactive substances from natural products, a quantitative knowledge of phase equilibria between target biosolutes and solvent is necessary. How-ever, mostly no such information is available in literature to date. Thus in the present study, illustratively the solubility of bioactive coumarin and its various derivatives (i.e., hydroxy-, methyl-, and methoxy-derivatives) in supercritical CO2 were measured at 308.15–328.15 K and 10–30 MPa. Also, the pure physical properties such as normal boiling point, critical constants, acentric factor, molar volume and standard vapor pressure for coumarin and its derivatives were estimated. By these estimated information, the measured solubilities were quantitatively correlated by an approximate lattice equation of state proposed recently by the present authors.  相似文献   
43.
Micron‐sized polymer particles were coated with layers of nickel compounds by plating electrolessly in the presence of aqueous solutions of nickel chloride, sodium hypophosphite, sodium citrate, and ammonium chloride at elevated temperature. The uniform functional polymer particle could be obtained by seeded polymerization. To investigate the effect of surface functionality on the conditions for nickel deposition, the polymer particle was functionalized with the thiol group. From morphological observation, it was found that the mode of nickel deposition was greatly dependent on the surface functionality of the polymer particle. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 420–424, 2003  相似文献   
44.
45.
The different melting temperatures of N‐methyl morpholine N‐oxide (NMMO) hydrates in the cellulose–NMMO hydrate solution may be explained by the rather different crystal structures of NMMO hydrates, which are determined by the amount of the hydrates. The preparative process of cellulose–NMMO hydrate solution may result in cellulose structural change from cellulose I to cellulose II, depending on the amount of the hydrate. Mixtures of cellulose and NMMO hydrate in a blender was changed from the granules to slurry with increasing mixing time at 60–70°C, which is below the melting point of the NMMO hydrate. In the case of 15 wt % cellulose–NMMO hydrate granules, which were made by mixing for 20 min, the melting points of various NMMO hydrates were obtained as 77.8°C (n = 0.83), 70.2°C (n = 0.97), and 69.7°C (n = 1.23), respectively, depending on the hydrate number. However, the melting points of cellulose–NMMO hydrate slurry and solution were shifted lower than those of cellulose granules, while the mixing time of slurry and solution are 25 and 35 min, respectively. These melting behaviors indicate instantaneous liquefaction of the NMMO hydrate and the diffusion of the NMMO hydrate into cellulose during mixing in a blender. When cellulose was completely dissolved in NMMO hydrate, the crystal structure of cellulose showed only cellulose II structure. In the cellulose–NMMO products of granules or slurry obtained by high‐speed mixing, which is a new preparation method, they still retained the original cellulose I structure. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1687–1697, 2004  相似文献   
46.
Native corn starch‐ and hydroxypropylated starch (HPS‐) based plastic films were prepared using the short pulp fiber as the reinforcement and the glycerol as the plasticizer. The results of tensile test showed that the strain and stress at break and elastic modulus increased with pulp content. With glycerol content, the strain at break increased considerably, but the breaking stress and elastic modulus decreased. And the stress–strain curves showed that the brittleness problem of films was overcome by the pulp, glycerol, and water content. The hydroxypropyl starch films showed results similar to those of the native starch films. The results of the three‐point bending test showed that maximum deflection, flexural strength, and specific work increased with pulp content, but the flexural modulus was the highest at a pulp content of 20%. And with the glycerol content, the maximum deflection and specific work of rupture increased, but the bending elastic modulus decreased. The hydroxypropyl starch films showed results similar to those of native starch films as far as the maximum deflection and flexural strength were concerned, but the bending elastic modulus and specific work of the hydroxypropyl starch films were considerably lower than those of starch films. So it was concluded that the flexibility of films was improved by the hydroxypropylation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2108–2117, 2003  相似文献   
47.
Composites based on poly(diphenyl amine) (PDPA) and multiwall carbon nanotubes (MWNTs) were prepared by chemical oxidative polymerization through two different approaches: in situ polymerization and intimate mixing. In in situ polymerization, DPA was polymerized in the presence of dispersed MWNTs in sulfuric acid medium for different molar composition ratios of MWNT and DPA. Intimate mixing of synthesized PDPA with MWNT was also used for the preparation of PDPA/MWNT composites. Transmission electron microscopy revealed that the diameter of the tubular structure for the composite was 10–20 nm higher than the diameter of pure MWNT. Scanning electron microscopy provided evidence for the differences in the morphology between the MWNTs and the composites. Raman and Fourier transform IR (FTIR) spectroscopy, thermogravimetric analysis, X‐ray diffraction, and UV–visible spectroscopy were used to characterize the composites and reveal the differences in the molecular level interactions between the components in the composites. The Raman and FTIR spectral results revealed doping‐type molecular interactions and coordinate covalent‐type interactions between MWNT and PDPA in the composite prepared by in situ polymerization and intimate mixing, respectively. The backbone structure of PDPA in the composite decomposed at a higher temperature (>340°C) than the pristine PDPA (~300°C). This behavior also favored the molecular level interactions between MWNT and PDPA in the composite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3721–3729, 2006  相似文献   
48.
The interfacial reaction of the polyethylene (PE)/starch blend system containing the reactive compatibilizer maleated polyethylene (m‐PE) was directly characterized by Fourier transform infrared (FTIR) spectroscopy. A significant amount of anhydride groups on m‐PE existed as hydrolyzed forms, resulting in a large amount of carboxyl groups. Using a vacuum‐heating‐cell designed in the laboratory, the carboxyl groups were successfully transformed into the dehydrolyzed state (i.e., anhydride group). This result enabled the direct spectroscopic observation of chemical reaction occurring at the interface. For the PE/starch blend system containing m‐PE, the chemical reaction at the interface was verified by the evolution of ester and carboxyl groups in the FTIR spectra. The effect of the reactive compatibilizer on the interfacial morphology was also examined by scanning electron micrography (SEM). Enhanced interfacial adhesion was clearly observed for the blend system containing reactive compatibilizer. Tensile strengths of blend systems containing m‐PE also increased noticeably compared with the corresponding system without compatibilizer. A similar observation was made for the breaking elongation data. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 767–776, 2002  相似文献   
49.
High-alumina containing high-level waste (HLW) will be vitrified at the Waste Treatment Plant at the Hanford Site. The resulting glasses, high in alumina, will have distinct composition-structure-property (C-S-P) relationships compared to previously studied HLW glasses. These C-S-P relationships determine the processability and product durability of glasses and therefore must be understood. The main purpose of this study is to understand the detailed structural changes caused by Al:Si and (Al + Na):Si substitutions in a simplified nuclear waste model glass (ISG, international simple glass) by combining experimental structural characterizations and molecular dynamics (MD) simulations. The structures of these two series of glasses were characterized by neutron total scattering and 27Al, 23Na, 29Si, and 11B solid-state nuclear magnetic resonance (NMR) spectroscopy. Additionally, MD simulations were used to generate atomistic structural models of the borosilicate glasses and simulation results were validated by the experimental structural data. Short-range (eg, bond distance, coordination number, etc) and medium-range (eg, oxygen speciation, network connectivity, polyhedral linkages) structural features of the borosilicate glasses were systematically investigated as a function of the degree of substitution. The results show that bond distance and coordination number of the cation-oxygen pairs are relatively insensitive to Al:Si and (Al + Na):Si substitutions with the exception of the B-O pair. Additionally, the Al:Si substitution results in an increase in tri-bridging oxygen species, whereas (Al + Na):Si substitution creates nonbridging oxygen species. Charge compensator preferences were found for Si-[NBO] (Na+), [3]B-[NBO] (Na+), [4]B (mostly Ca2+), [4]Al (nearly equally split Na+ and Ca2+), and [6]Zr (mostly Ca2+). The network former-BO-network former linkages preferences were also tabulated; Si-O-Al and Al-O-Al were preferred at the expense of lower Si-O-[3]B and [3]B-O-[3]B linkages. These results provide insights on the structural origins of property changes such as glass-transition temperature caused by the substitutions, providing a basis for future improvements of theoretical and computer simulation models.  相似文献   
50.
Water or acid soaking surface treatments have been shown to increase the mechanical strength of soda-lime silicate (SLS) glasses. This increase in strength has traditionally been attributed to effects related to residual stress or changes in fracture resistance. In this work, we report experimental data that cannot be explained based on the existing knowledge of glass surface mechanics. In dry environments, annealed and acid-leached SLS surfaces have comparable crack initiation stress and fracture stress as measured by Hertzian indentation and biaxial bending tests, respectively. Yet, in the presence of humidity, acid-leached surfaces have higher failure stress than the annealed surfaces. This apparent enhancement in the crack resistance of the acid-leached surface of SLS glass in humid environments supports the hypothesis that acid-leached surface chemistry can lower the transport kinetics of molecular water to critical flaws.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号