首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   948篇
  免费   93篇
  国内免费   3篇
电工技术   19篇
综合类   2篇
化学工业   209篇
金属工艺   37篇
机械仪表   80篇
建筑科学   4篇
矿业工程   3篇
能源动力   37篇
轻工业   44篇
水利工程   9篇
无线电   168篇
一般工业技术   271篇
冶金工业   67篇
原子能技术   12篇
自动化技术   82篇
  2024年   1篇
  2023年   16篇
  2022年   20篇
  2021年   39篇
  2020年   29篇
  2019年   30篇
  2018年   31篇
  2017年   40篇
  2016年   41篇
  2015年   28篇
  2014年   42篇
  2013年   55篇
  2012年   75篇
  2011年   82篇
  2010年   45篇
  2009年   51篇
  2008年   45篇
  2007年   29篇
  2006年   32篇
  2005年   25篇
  2004年   34篇
  2003年   21篇
  2002年   35篇
  2001年   21篇
  2000年   19篇
  1999年   14篇
  1998年   29篇
  1997年   26篇
  1996年   9篇
  1995年   10篇
  1994年   11篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   6篇
  1986年   6篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1975年   7篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1044条查询结果,搜索用时 31 毫秒
141.
A flexible hard coating for foldable displays is realized by the highly cross‐linked siloxane hybrid using structure–property relationships in organic–inorganic hybridization. Glass‐like wear resistance, plastic‐like flexibility, and highly elastic resilience are demonstrated together with outstanding optical transparency. It provides a framework for the application of siloxane hybrids in protective hard coatings with high scratch resistance and flexibility for foldable displays.  相似文献   
142.
The scaling down of meta-atoms or metamolecules (collectively denoted as metaunits) is a long-lasting issue from the time when the concept of metamaterials was first suggested. According to the effective medium theory, which is the foundational concept of metamaterials, the structural sizes of meta-units should be much smaller than the working wavelengths (e.g., << 1/5 wavelength). At relatively low frequency regimes (e.g., microwave and terahertz), the conventional monolithic lithography can readily address the materialization of metamaterials. However, it is still challenging to fabricate optical metamaterials (metamaterials working at optical frequencies such as the visible and near-infrared regimes) through the lithographic approaches. This serves as the rationale for using colloidal self-assembly as a strategy for the realization of optical metamaterials. Colloidal self-assembly can address various critical issues associated with the materialization of optical metamaterials, such as achieving nanogaps over a large area, increasing true 3D structural complexities, and cost-effective processing, which all are difficult to attain through monolithic lithography. Nevertheless, colloidal self-assembly is still a toolset underutilized by optical engineers. Here, the design principle of the colloidally self-assembled optical metamaterials exhibiting unnatural refractions, the practical challenge of relevant experiments, and the future opportunities are critically reviewed.  相似文献   
143.
Numerical analysis of the hyperelastic behavior of polymer materials has drawn significant interest from within the field of mechanical engineering. Currently, hyperelastic models based on the energy density function, such as the Neo-Hookean, Mooney-Rivlin, and Ogden models, are used to investigate the hyperelastic responses of materials. Conventionally, constants relating to materials were determined from experimental data by using global least-squares fitting. However, formulating a constitutive equation to capture the complex behavior of hyperelastic materials was difficult owing to the limitations of the analytical model and experimental data. This study addresses these limitations by using a system of neural networks (NNs) to design a data-driven surrogate model without a specific function formula, and employs molecular dynamics (MD) simulations to calculate the massive amount of combined loading data of hyperelastic materials. Thus, MD simulations were used to propose an NN constitutive model for hyperelasticity to derive the constitutive equation to model the complex hyperelastic response. In addition, the probability distributions of the numerical solutions of hyperelasticity are used to characterize the uncertainty of the MD models. These statistical finite element results not only present numerical results with reliability ranges but also scattered distributions of the solution obtained from the MD-based probability distributions.  相似文献   
144.
Gallium trioxide, β-Ga2O3, has been recently studied due to its promising semiconducting properties as active material in transistors or Schottky diodes. Transistors with β-Ga2O3 channels are mostly metal oxide field effect transistors (MOSFET), and they show very negative threshold voltages (Vth) in general. Metal semiconductor field effect transistors (MESFETs) with top gate are also reported with less negative Vth. Still, β-Ga2O3 MESFETs are only a few. Here, bottom gate architecture β-Ga2O3 MESFETs using transition metal dichalcogenide (TMD) NbS2 and TaS2 are reported. Due to the large work functions of those metallic TMDs, the MESFETs display minimum subthreshold swing of 61 mV dec−1, small Vth of −1.2 V, minimum OFF ID of ≈100 fA, and maximum ON/OFF current ratio of ≈108. Both β-Ga2O3 Schottky diodes with TaS2 and NbS2 display good junction stability even after 300 °C measurements in 10 mTorr vacuum. When the β-Ga2O3 MESFET with TaS2 gate is integrated as a switching FET into an organic light emitting diode (OLED) circuit, it demonstrates long-term leakage endurance performance, maintaining an OLED brightness higher than 58% of the initial intensity after 100 s passes since the ON-switching point, which is even superior to the performance of conventional a-IGZO MOSFET switch.  相似文献   
145.
With the recent interest in data storage in flexible electronics, highly reliable charge trap-type organic-based non-volatile memory (CT-ONVM) has attracted much attention. CT-ONVM should have a wide memory window, good endurance, and long-term retention characteristics, as well as mechanical flexibility. This paper proposed CT-ONVM devices consisting of band-engineered organic–inorganic hybrid films synthesized via an initiated chemical vapor deposition process. The synthesized poly(1,3,5-trimethyl-1,3,5,-trivinyl cyclotrisiloxane) and Al hybrid films are used as a tunneling dielectric layer and a blocking dielectric layer, respectively. For the charge trapping layer, different Hf, Zr, and Ti hybrids are examined, and their memory performances are systematically compared. The best combination of hybrid dielectric stacks showed a wide memory window of 6.77 V, good endurance of up to 104 cycles, and charge retention of up to 71% after 108 s even under the 2% strained condition. The CT-ONVM device using the hybrid dielectric stacks outperforms other organic-based charge trap memory devices and is even comparable in performance to conventional inorganic-based poly-silicon/oxide/nitride/oxide/silicon structures devices. The CT-ONVM using hybrid dielectrics can overcome the inherent low reliability and process complexity limitations of organic electronics and expedite the realization of wearable organic electronics.  相似文献   
146.
The large inertia of a traditional power system slows down system's frequency response but also allows decent time for controlling the system. Since an autonomous renewable microgrid usually has much smaller inertia, the control system must be very fast and accurate to fight against the small inertia and uncertainties. To reduce the demanding requirements on control, this paper proposes to increase the inertia of photovoltaic (PV) system through inertia emulation. The inertia emulation is realized by controlling the charging/discharging of the direct current (DC)-link capacitor over a certain range and adjusting the PV generation when it is feasible and/or necessary. By well designing the inertia, the DC-link capacitor parameters and the control range, the negative impact of inertia emulation on energy efficiency can be reduced. The proposed algorithm can be integrated with distributed generation setting algorithms to improve dynamic performance and lower implementation requirements. Simulation studies demonstrate the effectiveness of the proposed solution.   相似文献   
147.
The effect of Al3+ substitution on the enhancement of the luminescence of Lu1–xAlxNbO4:Eu3+ and Lu1–xAlxNbO4:Tb3+ was investigated. X-ray diffraction patterns confirmed that the Eu3+, Tb3+, and Al3+ ions were fully incorporated into the Lu3+ sites. In the case of Lu1–xAlxNbO4:Eu3+, the predominant red emission (614 nm) was assigned to the 5D0?→?7F2 transition of Eu3+ and for x?=?0–0.05, its intensity increased up to ~125 and 108% under 395 nm (7F0  5L6) and a charge transfer band excitation, respectively. For Lu1–xAlxNbO4:Tb3+, the strongest emission band peaking at 551 nm was attained in the green region among multiple emission bands corresponding to the 5D4?→?7FJ transitions of Tb3+. Increasing the x values from 0 to 0.05 increased the green emission significantly by ~137%. These phenomena were explained by the local structural distortions and crystal field asymmetry surrounding Eu3+ and Tb3+, which were attributed to a large difference in the ionic radii of Al3+ and Lu3+.  相似文献   
148.
The rapid detection of foot‐and‐mouth disease virus (FMDV) is vital for the prevention of foot‐and‐mouth disease outbreaks. In this study, a polyvinylidene difluoride (PVDF)‐supported polydiacetylene (PDA) immunosensor is developed to detect FMDV, in which a polyclonal antibody against the FMDV VP1 antigen is conjugated as a specific virus‐binding module without a linker. First, a liposome‐based immunosensor is generated for the FMDV VP1 protein in the form of photopolymerized PDA colloids. Then, the VP1‐specific PDA immunosensors are modified onto PVDF strip to enable the rapid and portable detection of FMDV. Detailed analyses are performed using ultraviolet‐visible spectroscopy, dynamic light scattering, transmission electron microscopy, and scanning electron microscopy. A blue‐to‐red color transition is observed in the presence of FMDV particles, indicating the potential applications of FMDV‐specific PDA immunosensors for use in solid‐phase detection as well as via liquid‐phase liposome platforms. Thus, this work provides a rapid and simple detection for FMDV.  相似文献   
149.
For most of linear time-varying (LTV) systems, it is difficult to design time-varying controllers in analytic way. Accordingly, by approximating LTV systems as uncertain linear time-invariant, control design approaches such as robust control have been applied to the resulting uncertain LTI systems. In particular, a robust control method such as quantitative feedback theory (QFT) has an advantage of guaranteeing the frozen-time stability and the performance specification against plant parameter uncertainties. However, if these methods are applied to the approximated linear time-invariant (LTI) plants with large uncertainty, the resulting control law becomes complicated and also may not become ineffective with faster dynamic behavior. In this paper, as a method to enhance the fast dynamic performance of LTV systems with bounded time-varying parameters, the approximated uncertainty of time-varying parameters are reduced by the proposed QFT parameter-scheduling control design based on radial basis function (RBF) networks.  相似文献   
150.
The aging phenomena of a poly(ether ether keton) (PEEK) surface hydrophilically modified via various protocols was investigated. The use of plasma treatment or chemical etching methods offers a relatively convenient surface modification route. However, the effects of hydrophilic treatment quickly disappeared and its original surface property was recovered within a few hours or a few days when stored at ambient conditions. Surface treatment based on a single‐layered chemical grafting method rendered an excellent hydrophilic surface with an initial contact angle of <15° and an improved retardation of surface aging. However, the contact angle of the modified PEEK specimen gradually increased with time and eventually reached ~50° after 23 days. A new method for the long‐term stable hydrophilic surface treatment of PEEK using a multilayered chemical grafting strategy was also developed. With this regard, aging of the modified surface could be significantly retarded over ~90 days. It was believed that the effectiveness of the surface modification and the retarded aging phenomena via the multilayered hydrophilic treatment could be attributed to mechanical and chemical stability of the covalently bonded active surface groups on the grafted polymer networks. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46042.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号