首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   794篇
  免费   63篇
电工技术   7篇
综合类   1篇
化学工业   230篇
金属工艺   15篇
机械仪表   15篇
建筑科学   10篇
矿业工程   1篇
能源动力   22篇
轻工业   26篇
水利工程   3篇
石油天然气   1篇
无线电   90篇
一般工业技术   283篇
冶金工业   42篇
原子能技术   7篇
自动化技术   104篇
  2023年   8篇
  2022年   38篇
  2021年   37篇
  2020年   25篇
  2019年   17篇
  2018年   33篇
  2017年   25篇
  2016年   27篇
  2015年   15篇
  2014年   39篇
  2013年   52篇
  2012年   44篇
  2011年   67篇
  2010年   29篇
  2009年   33篇
  2008年   52篇
  2007年   34篇
  2006年   31篇
  2005年   36篇
  2004年   34篇
  2003年   39篇
  2002年   27篇
  2001年   12篇
  2000年   9篇
  1999年   14篇
  1998年   13篇
  1997年   7篇
  1996年   8篇
  1995年   12篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1991年   6篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1981年   2篇
  1977年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有857条查询结果,搜索用时 31 毫秒
101.
Electronic and structural properties of antiphase boundaries in group III-V semiconductor compounds have been receiving increased attention due to the potential to integration of optically-active III-V heterostructures on silicon or germanium substrates. The formation energies of {110}, {111}, {112}, and {113} antiphase boundaries in GaAs and GaP were studied theoretically using a full-potential linearized augmented plane-wave density-functional approach. Results of the study reveal that the stoichiometric {110} boundaries are the most energetically favorable in both compounds. The specific formation energy γ of the remaining antiphase boundaries increases in the order of γ{113} ≈ γ{112} < γ{111}, which suggests {113} and {112} as possible planes for faceting and annihilation of antiphase boundaries in GaAs and GaP.  相似文献   
102.
The electrorheological (ER) behavior of modified montmorillonite (MMT) suspensions in polydimethylsiloxane is studied. As established by rotational viscometry, the samples with a dispersed phase concentration from 1 to 8 wt % reveal viscous Newtonian behavior and dramatically change their properties to elastic when electric field is applied. The rheological characteristics of the suspensions over 0–7 kV mm−1 range of electric field strengths are also studied. Novel X-ray diffraction method is developed to evaluate the suspension of the filler in a siloxane medium and to calculate the degree of its exfoliation. The dependence of exfoliation degree, dielectric, and ER characteristics on the type of modifier in the MMT structure is considered. Based on the obtained data, a new model of system behavior with the various types of fillers is proposed and the prospects of utilizing MMT as a filler for ER fluids are demonstrated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47678.  相似文献   
103.
Abstract

The one-step method for graphene oxide (GO) simultaneous reduction and carboxylation via ultraviolet irradiation in the inert atmosphere has been reported. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) data revealed that the proposed approach allows to obtain reduced graphene oxide (rGO) films, containing up to 10 at.% of carboxyl groups. The carboxyl groups concentration can be tuned within the range of 3 to 10 at.% by controlling the oxidation degree of the irradiated GO via the preliminary low-temperature air heating. Furthermore, no carboxylation effect is observed in the case of irradiation of the completely reduced GO films. This coincides with our previous results, validating the proposed model of GO carboxylation based on photoinduced conversion of basal-plane hydroxyl groups and ketones into carboxyl ones. Despite a different degree of carboxylation, all the obtained samples demonstrate almost complete elimination of basal plane groups and restoration of the graphene flakes aromatic structure. This fact is emphasized by the sheet resistance measurements, demonstrating that the obtained C-xy graphene exhibits high electrical conductivity. As a net result, the material obtained by the presented method shows promising applications in the manufacturing of biosensor transducers owing to both its conductive nature and presence of carboxyl groups, playing the role of the anchoring points for biomolecules.  相似文献   
104.
At present, much attention is paid to the use of antimicrobial peptides (AMPs) of natural and artificial origin to combat pathogens. AMPs have several points that determine their biological activity. We analyzed the structural properties of AMPs, as well as described their mechanism of action and impact on pathogenic bacteria and viruses. Recently published data on the development of new AMP drugs based on a combination of molecular design and genetic engineering approaches are presented. In this article, we have focused on information on the amyloidogenic properties of AMP. This review examines AMP development strategies from the perspective of the current high prevalence of antibiotic-resistant bacteria, and the potential prospects and challenges of using AMPs against infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).  相似文献   
105.
106.
When a flat sample of medium density fibreboard (MDF) is exposed to radiant heat in an inert atmosphere, primary crack patterns suddenly start to appear over the entire surface before pyrolysis and any charring occurs. Contrary to common belief that crack formation is due to drying and shrinkage, it was demonstrated for square samples that this results from thermomechanical instability. In the present paper, new experimental data are presented for circular samples of the same MDF material. The sample was exposed to radiant heating at 20 or 50 kW/m2, and completely different crack patterns with independent eigenmodes were observed at the two heat fluxes. We show that the two patterns can be reproduced with a full 3‐D thermomechanical surface instability model of a hot layer adhered to an elastic colder foundation in an axisymmetric domain. Analytical and numerical solutions of a simplified 2‐D formulation of the same problem provide excellent qualitative agreement between observed and calculated patterns. Previous data for square samples, together with the results reported in the present paper for circular samples, confirm the validity of the model for qualitative predictions and indicate that further refinements can be made to improve its quantitative predictive capability.  相似文献   
107.
Spatial distribution of the human population is distinctly heterogeneous, e.g. showing significant difference in the population density between urban and rural areas. In the historical perspective, i.e. on the timescale of centuries, the emergence of densely populated areas at their present locations is widely believed to be linked to more favourable environmental and climatic conditions. In this paper, we challenge this point of view. We first identify a few areas at different parts of the world where the environmental conditions (quantified by the temperature, precipitation and elevation) show a relatively small variation in space on the scale of thousands of kilometres. We then examine the population distribution across those areas to show that, in spite of the approximate homogeneity of the environment, it exhibits a significant variation revealing a nearly periodic spatial pattern. Based on this apparent disagreement, we hypothesize that there may exist an inherent mechanism that may lead to pattern formation even in a uniform environment. We consider a mathematical model of the coupled demographic-economic dynamics and show that its spatially uniform, locally stable steady state can give rise to a periodic spatial pattern due to the Turing instability, the spatial scale of the emerging pattern being consistent with observations. Using numerical simulations, we show that, interestingly, the emergence of the Turing patterns may eventually lead to the system collapse.  相似文献   
108.
We describe the simple modification of a confocal Raman imaging microscope to incorporate two ultra-narrow holographic notch filters. The modified microscope rejects the laser excitation line (Rayleigh peak) by a discrimination factor of ~10(11) and allows simultaneous measurements of Stokes/anti-Stokes Raman shifts as close as ~10/20 cm(-1) to the Rayleigh line. The extremely high rejection ratio of the Rayleigh peak results in its intensity becoming comparable to typical Raman scattering signals. This is essential for micro-Raman spectroscopy and imaging in the low-wavenumber region. We illustrate the resulting performance with measurements on silicon/silica, sapphire, sulfur, L-cystine, as well as on single-walled carbon nanotubes (SWNTs). We find that both aggregated (bulk) and individual (deposited on substrate) SWNTs demonstrate strong and broad characteristic Raman features below ~100 cm(-1)-in a region which has remained essentially unexplored in measurements of bulk SWNT samples and which has so far been inaccessible for Raman spectroscopy of individual SWNTs.  相似文献   
109.
Multiferroic materials have driven significant research interest due to their promising technological potential. Developing new room‐temperature multiferroics and understanding their fundamental properties are important to reveal unanticipated physical phenomena and potential applications. Here, a new room temperature multiferroic nanocomposite comprised of an ordered ferrimagnetic spinel α‐LiFe5O8 (LFO) and a ferroelectric perovskite BiFeO3 (BFO) is presented. It is observed that lithium (Li)‐doping in BFO favors the formation of LFO spinel as a secondary phase during the synthesis of LixBi1?xFeO3 ceramics. Multimodal functional and chemical imaging methods are used to map the relationship between doping‐induced phase separation and local ferroic properties in both the BFO‐LFO composite ceramics and self‐assembled nanocomposite thin films. The energetics of phase separation in Li doped BFO and the formation of BFO‐LFO composites are supported by first principles calculations. These findings shed light on Li's role in the formation of a functionally important room temperature multiferroic and open a new approach in the synthesis of light element doped nanocomposites for future energy, sensing, and memory applications.  相似文献   
110.
To achieve semiconducting materials with high electron mobility in organic field‐effect transistors (OFETs), low‐lying energy levels (the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)) and favorable molecular packing and ordering are two crucial factors. Here, it is reported that the incorporation of pyridine and selenophene into the backbone of a diketopyrrolopyrrole (DPP)‐based copolymer produces a high‐electron‐mobility semiconductor, PDPPy‐Se. Compared with analogous polymers based on other DPP derivatives and selenophene, PDPPy‐Se features a lower LUMO that can decrease the electron transfer barrier for more effective electron injection, and simultaneously a lower HOMO that, however, can increase the hole transfer barrier to suppress the hole injection. Combined with thermal annealing at 240 °C for thin film morphology optimization to achieve large‐scale crystallite domains with tight molecular packing for effective charge transport along the conducting channel, OFET devices fabricated with PDPPy‐Se exhibit an n‐type‐dominant performance with an electron mobility (μe) as high as 2.22 cm2 V?1 s?1 and a hole/electron mobility ratio (μhe) of 0.26. Overall, this study demonstrates a simple yet effective approach to boost the electron mobility in organic transistors by synergistic use of pyridine and selenophene in the backbone of a DPP‐based copolymer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号