首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4771篇
  免费   395篇
  国内免费   49篇
电工技术   110篇
综合类   19篇
化学工业   1471篇
金属工艺   161篇
机械仪表   209篇
建筑科学   197篇
矿业工程   17篇
能源动力   293篇
轻工业   502篇
水利工程   83篇
石油天然气   79篇
武器工业   5篇
无线电   385篇
一般工业技术   769篇
冶金工业   141篇
原子能技术   33篇
自动化技术   741篇
  2024年   22篇
  2023年   80篇
  2022年   139篇
  2021年   350篇
  2020年   289篇
  2019年   351篇
  2018年   425篇
  2017年   409篇
  2016年   384篇
  2015年   205篇
  2014年   363篇
  2013年   549篇
  2012年   362篇
  2011年   381篇
  2010年   244篇
  2009年   197篇
  2008年   122篇
  2007年   82篇
  2006年   65篇
  2005年   32篇
  2004年   23篇
  2003年   24篇
  2002年   16篇
  2001年   8篇
  2000年   9篇
  1999年   5篇
  1998年   13篇
  1997年   6篇
  1996年   10篇
  1995年   7篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
排序方式: 共有5215条查询结果,搜索用时 15 毫秒
101.
Polypropylene (PP)/poly(lactic acid) (PLA)/clay nanocomposite films with various compositions (PP‐rich and PLA‐rich) were prepared. Their structural and barrier properties against CO2, O2, and N2 were investigated. The microstructure of the nanocomposites was studied by scanning electron microscopy, transmission electron microscopy, and wide angle X‐ray scattering. The PP‐rich with 75/25 composition revealed the best barrier properties against all the gases which could be justified according to its microstructure. Selectivity of O2/N2 and CO2/N2 was also measured. It was found that the addition of nanoclay as a gas barrier component reduced the permeability in both systems. The permselectivity was also reduced in the PP‐rich films while it was increased in the PLA‐rich system. Moreover, the temperature dependency of permeability, selectivity, and permselectivity for PP, PLA, and PP/PLA (75/25) samples was examined. The results showed that the temperature dependence of permeability obeyed an Arrhenius equation and order of activation energy of permeability for O2, CO2, and N2 gases was found to be EP < EP/PLA < EPLA. According to solubility measurements, the order of solubility coefficient for gases was as follows: CO2 > O2 > N2. Finally, the molecular dynamics (MD) simulation was performed to estimate the diffusivity coefficients of the gases and showed that solubility increases with increasing temperature, which was in accordance with the experiments. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46665.  相似文献   
102.
Polyvinylchloride-blend-styrene butadiene rubber based nanocomposite cation exchange membranes were prepared by solution casting technique. Iron-oxide nanoparticles and Ag-nanolayer were simultaneously utilized as filler and surface modifier in membrane fabrication. The effects of Ag-nanolayer film thickness on membrane physicochemical and antibacterial characteristics of nanocomposite PVC-blend-SBR/Iron-oxide nanoparticles were studied. SEM images showed membrane roughness decreasing by Ag nanolayer thickness increasing. Membrane charge density and selectivity declined by Ag nanolayer coating up to 5 nm in membranes and then showed increasing trend by more nanolayer thickness. Ionic flux also showed increasing trend. Membranes showed good ability in E-Coli removal. 20 nm Ag-nanolayer coated membrane showed better performance compared to others.  相似文献   
103.
Electrocatalytic oxidation of methanol and some other primary alcohols on a glassy carbon electrode modified with multi-walled carbon nanotubes and nano-sized nickel oxide (GCE/MWNT/NiO) was investigated by cyclic voltammetry and chronoamperometry in alkaline medium. The results were compared with those obtained on a nickel oxide-modified glassy carbon electrode (GCE/NiO). Both the electrodes were conditioned by potential cycling in the range of 0.1–0.6 V versus Ag/AgCl in a 0.10 M NaOH solution. The effects of various parameters such as scan rate, alcohol concentration, thickness of NiO film, and real surface area of the modified electrodes were also investigated and compared. It was found that the GCE/MWNT/NiO-modified electrode possesses an improved electrochemical behavior over the GC/NiO-modified electrode for methanol oxidation.  相似文献   
104.
The effect of temperature, WHSV and Fe loading over HZSM-5 catalyst in thermal-catalytic cracking (TCC) of naphtha for the production of light olefins has been studied. The response surface defined by three most significant parameters is obtained from Box-Behnken design method and the optimal parameter set is found. The results show that ethylene increases with temperature, while propylene shows an optimum at 650 °C. Moderate WHSV is favorable for maximum production of light olefins. Addition of Fe to HZSM-5 has a favorable effect on the production of light olefins up to 6% of loading. Excess amount of loading decreases the conversion of naphtha, which leads to a drop in light olefin yields. The yield of light olefins (ethylene and propylene) at 670 °C, 44 hr−1 and 6 wt% Fe has been increased to 5.43 wt% compared to the unmodified HZSM-5 and reaches to 42.47 wt%.  相似文献   
105.
The effect of polyaniline and polypyrrole composites and the influence of type and concentration of stabilizer, pH of solution, and type of adsorbent on lead salt removal from aqueous solution were studied. The results indicated that the extents of removal of lead in alkaline solution (pH = 10) were 99.95 and 99.23%, respectively, when polyaniline and Polyaniline/(sodium dodecylbenzenesulfonate) composite were used as adsorbents. The results were compared with those obtained by using cation exchangers such as Purolite and Amberjet, and the observations indicated that Purolite and Amberjet were the better lead removal agents. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   
106.
In this work, neat and modified nanodiamond (ND) particles were embedded into high-density polyethylene (HDPE) membranes to improve hydrophilicity and antifouling properties. The membranes were prepared via thermally induced phase separation (TIPS) method and used for pharmaceutical wastewater treatment in membrane bioreactors (MBR) system. To prevent the agglomeration of ND, it was modified using two methods: thermal carboxylation (ND-COOH) and grafting with polyethylene glycol (ND-PEG). Membranes with different concentration of ND-COOH and ND-PEG nanoparticles ranging from 0.00 to 1.00 wt % were prepared and characterized using a set of analyses including water contact angle, pure water flux, tensile strength, differential scanning calorimeter, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. It was found that the optimum contents of ND-COOH and ND-PEG nanoparticles were 0.50 wt % and 0.75 wt %, respectively. The interfacial interaction between nanoparticles and HDPE matrix was studied based on Pukanzsky model. To examine the performance of membranes, critical flux, filtration experiment in the MBR, and fouling analysis of membranes were carried out. The results showed that among the fabricated membranes, 0.75 wt % HDPE/ND-PEG membrane had the highest water flux and the best antifouling properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47914.  相似文献   
107.
New polyamide 66/graphene oxide (GO)-grafted aliphatic-aromatic polyamide (polyamide-imide) (PAI) (PA66/GOF) composites nanofibers were successfully prepared via electrospinning method for the first time. An polyamide imide (PAI) was synthesized using polycondensation reaction from a dicarboxylic acid and a diamine based on 4,4′-(4,4′-isopropylidenediphenyl-1,1′-diyldioxy) dianiline, and characterized by 1HNMR and FTIR. Morphological, structural, thermal and mechanical characteristics of the nanocomposite fibers were investigated by means of SEM, TEM, WAXD, DMTA and TGA techniques. Composites nanofibers of PA66/GO, PA66/PAI and PA66/GOF with smooth surface, uniform structure as well as with diameter ranging from 195 to 784 nm were obtained. The GO incorporation caused a reduction in the nanofibers diameters. The TEM images showed that the GO was well dispersed in the PA66 nanofibers without significant aggregation. An approximately 10 °C temperature increase in the glass transition temperature of PA66 was achieved by addition of 0.5 wt% of PAI, resulting from aliphatic-aromatic structure of PAI. By the TGA results, an increase about 40 °C was observed in the thermal stability of PA66/PAI composite nanofibers in comparison with that of pure PA66 nanofibers.  相似文献   
108.
Cellulose dissolved in ionic liquid (1‐(carboxymethyl)pyridinium chloride)/water (60/40 w/w) mixture is regenerated in various non‐solvents, namely water, ethanol, methanol and acetone, to gain more insight into the contribution of non‐solvent medium to the morphology of regenerated cellulose. To this end, the initial and regenerated celluloses were characterized with respect to crystallinity, thermal stability, chemical structure and surface morphology using wide‐angle X‐ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. According to the results, regardless of non‐solvent type, all regenerated samples have the same chemical structure and lower crystallinity in comparison to the initial cellulose, making them a promising candidate for efficient biofuel production based on enzymatic hydrolysis of cellulose. The reduction in crystallinity of regenerated samples is explained based on the potential of the non‐solvent to break the hydrogen bonds between cellulose chains and ionic liquid molecules as well as the affinity of water and non‐solvent which can be evaluated based on Hansen solubility parameter. The latter also determines the phase‐separation mechanism during the regeneration process, which in turn affects surface morphology of the regenerated cellulose. The pivotal effect of regenerated cellulose crystallinity on its thermal stability is also demonstrated. Regenerated cellulose with lower crystallinity is more susceptible to molecular rearrangement during heating and hence exhibits enhanced thermal stability. © 2019 Society of Chemical Industry  相似文献   
109.
The microstructure of rubber-like ethylene-propylene copolymer (MN4) produced by a mixed nickel-based system (MN) containing catalysts of dibromo[N,N′-bis(2,6-diisopropylphenyl)-2,3-butanediimine]nickel(II) n1 and dibromo[N,N′-(phenanthrene-9,10-diylidene)bis(2,6-diisopropylaniline)]nickel(II) n2 was determined by 13C NMR technique. Sequences distribution of ethylene (E), propylene (P), EP, inverted propylene and uninterrupted methylene and also methylene number-average sequence lengths for the copolymer (MN4) were estimated. The results obtained from the MN4 EP copolymer were compared with reported copolymers which had been synthesized using constrained geometry catalyst (CGC) and vanadium-based Ziegler-Natta catalyst. The results demonstrated that the MN4 EP copolymer had fewer alternating comonomer sequences than ethylene-propylene elastomers obtained by CGC and vanadium-based (V) catalysts. A large number of the inversion structures (66 %) and high mole percent of sequences containing a long branch (3.2 mol%) were also observed in unique microstructure of the copolymer (MN4).  相似文献   
110.
A bi-modal porous structure MCM-41 (BPS-MCM-41) was synthesized and functionalized by 3-[2-(2-Aminoethylamino)ethylamino]propyltrimethoxysilane (TRI); also, its performance in amine grafting and CO2 capturing was compared with that of pore-expanded MCM-41 [1]. To create larger pores beside the mesoporous structure of MCM-41, carbon black nanoparticles were used as the solid template. Characterizing the BPS-MCM-41 using the BET and BJH techniques resulted in the surface reduction of 29.3 percent and volume increase of 68.46 percent. The pore size distribution showed two peaks: a narrow peak at 2.24 nm diameter, which belonged to micelles, and a wide one at about 50 nm due to the presence of used nanoparticles. The functionalization confirmed that BPS-MCM-41 is capable of accommodating a large quantity of amine groups. The CO2 adsorption measurement indicated that internal volume of the adsorbent was a critical factor affecting the adsorption capacity of the amine grafted adsorbents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号