首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   21篇
  国内免费   3篇
电工技术   2篇
综合类   1篇
化学工业   66篇
金属工艺   3篇
机械仪表   2篇
建筑科学   4篇
能源动力   16篇
轻工业   15篇
水利工程   11篇
石油天然气   12篇
无线电   12篇
一般工业技术   50篇
冶金工业   9篇
原子能技术   6篇
自动化技术   19篇
  2023年   4篇
  2022年   7篇
  2021年   7篇
  2020年   6篇
  2019年   12篇
  2018年   18篇
  2017年   14篇
  2016年   16篇
  2015年   8篇
  2014年   9篇
  2013年   21篇
  2012年   6篇
  2011年   14篇
  2010年   11篇
  2009年   14篇
  2008年   11篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   6篇
  2002年   5篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有228条查询结果,搜索用时 31 毫秒
21.
Strain rate has significant effect on mechanical behavior of the thermoset polymers. The rate sensitivity is more complicated for thermoset nanocomposites, which compose of two quite different types of materials. Nanofiller‐reinforced epoxy resin is widely used in the industry. In the present work, epoxy resin is reinforced by 0.05 to 0.7 wt% nanographene oxide (GO). The strain rate sensitivity of the fabricated nanocomposites is investigated through compressive test carried out at the strain rates of 0.001–1,900 s?1. The stress–strain curves of the nanocomposites indicated considerable difference between the low‐strain and high‐strain‐rate responses of the specimens. The results showed that the compressive strength of the nanocomposites was improved by more than 100% at high strain rates with respect to the low strain rates. Also, the addition of nano‐GO had influence on compressive strength enhancement but not as significant as the effect of strain rate. It was observed that the effect of GO was less important for higher strain rates. The experimental compressive strength and modulus of elasticity of the nanocomposites were casted in empirical relations for low and high strain rates for various filler weight percentages. Scanning electron microscopy was also used to examine the quality of GO dispersion. POLYM. ENG. SCI., 59:1636–1647 2019. © 2019 Society of Plastics Engineers  相似文献   
22.
For the fast uptake into industrial applications, the further development of robust methods of nanomaterials, which are inexpensive and simultaneously technologically feasible, is one of the major key factors. A newly introduced atmospheric pulsed laser deposition method, based on a flowing gas approach, was used for plasmonic metal nanoparticle (NP) film of silver. Contrary to vacuum, in this method, the ambient air restricts expansion of the ablation plume within 1 to 3 mm above the target surface. These sets constrain on the formation of NP film close to the ablation spot. For deposition on a widely spaced surface, ablation material was entrained in a flow of argon, supplied at ~32 ms−1, and effectively delivered to the substrate at ~20 ms−1. The films produced were crystalline and particulate in nature, showing spectral plasmonic feature of surface plasmon resonance in the visible region. The film was directly tested in surface-enhanced Raman spectroscopy for chemical detection of crystal violet; the film with large particulates and aggregated crystallites was well-performed, showing enhanced Raman signals and detection sensitivity. Certainly, flowing gas atmospheric pulsed laser deposition seems a fast alternative to vacuum-pulsed laser deposition but needs further investigations to bring it in the industry for applications in sensor, catalysis, solar cell, and coating technology.  相似文献   
23.
The phenomena of spontaneous combustion and thermal runaway in wood pellets storage were investigated using lab-scale experiments in the temperature range of 100–200 °C. The critical temperatures were determined for four sizes of reactors. The kinetic parameters of the self-heating were determined using three methods, the Frank-Kamenetskii's method, crossing point method, and numerical curve fitting method. Mean values of activation energy (E) of 78.7 ±0.8 kJ/mol and self-heating rate constant (∆ rhA) of (4.22 ±2.5) × 10 6 kJ/(kg s) were obtained for four type of wood pellets (made from whitewood) samples from different pellet producers in British Columbia. Finally, a two-dimensional numerical model was developed to predict the temperature development during self-heating and the critical temperature for known sizes of reactors.  相似文献   
24.
The way towards generating a website front end involves a designer settling on an idea for what kind of layout they want the website to have, then proceeding to plan and implement each aspect one by one until they have converted what they initially laid out into its Html front end form, this process can take a considerable time, especially considering the first draft of the design is traditionally never the final one. This process can take up a large amount of resource real estate, and as we have laid out in this paper, by using a Model consisting of various Neural Networks trained on a custom dataset. It can be automated into assisting designers, allowing them to focus on the other more complicated parts of the system they are designing by quickly generating what would rather be straightforward busywork. Over the past 20 years, the boom in how much the internet is used and the sheer volume of pages on it demands a high level of work and time to create them. For the efficiency of the process, we proposed a multi-model-based architecture on image captioning, consisting of Convolutional neural network (CNN) and Long short-term memory (LSTM) models. Our proposed approach trained on our custom-made database can be automated into assisting designers, allowing them to focus on the other more complicated part of the system. We trained our model in several batches over a custom-made dataset consisting of over 6300 files and were finally able to achieve a Bilingual Evaluation Understudy (BLEU) score for a batch of 50 hand-drawn images at 87.86%  相似文献   
25.
Congestion control is one of the main obstacles in cyberspace traffic. Overcrowding in internet traffic may cause several problems; such as high packet hold-up, high packet dropping, and low packet output. In the course of data transmission for various applications in the Internet of things, such problems are usually generated relative to the input. To tackle such problems, this paper presents an analytical model using an optimized Random Early Detection (RED) algorithm-based approach for internet traffic management. The validity of the proposed model is checked through extensive simulation-based experiments. An analysis is observed for different functions on internet traffic. Four performance metrics are taken into consideration, namely, the possibility of packet loss, throughput, mean queue length and mean queue delay. Three sets of experiments are observed with varying simulation results. The experiments are thoroughly analyzed and the best packet dropping operation with minimum packet loss is identified using the proposed model.  相似文献   
26.
Silicon - The direct condensation of diketones and 1,2-phenylenediamines was accomplished in the presence of magnetic MCM-41 supported ferrous sulfate (Fe3O4@FeSO4-MCM-41) as a nanosized solid acid...  相似文献   
27.
Magnetic nanofluid actuation by rotating magnetic fields was proposed as a high‐performance tool for liquid mixing with enhanced micromixing features. A comparative study was conducted to evaluate the mixing index in T‐type mixers of magnetic and nonmagnetic fluids subject to static (SMF), oscillating (OMF), and rotating (RMF) magnetic fields. RMF excitation unveiled superior mixing indices with strong dependences to magnetic field frequency and content of magnetic nanoparticles. The impact of magnetic field types on micromixing was further examined at low and moderate Re numbers using the Villermaux–Dushman reaction and IEM micromixing model. The IEM‐inferred micromixing times were remarkably shorter by nearly four orders of magnitude in comparison with OMF and SMF excitations, and without magnetic field. The proposed mixing strategy is foreseen to complement innovative microfluidic devices with valuable mixing tools and methods for the diagnosis of the coupling between transport and intrinsic kinetics. © 2016 American Institute of Chemical Engineers AIChE J, 63: 337–346, 2017  相似文献   
28.
It was proposed and subsequently established that wrapping of red oak wood crossties with epoxy impregnated glass fiber composites will impart longer service life and better stiffness and strength characteristics to these hybrid ties than conventional ones and will help them better withstand environmental extremes. The objective was to understand the degrading effects of aqueous (distilled water), saline (NaCl), acidic (HCl), and alkaline (NaOH) solutions, as well as accelerated aging and freeze/thaw cycling environments on the dynamic and static mechanical properties of these hybrid materials (i.e., wood, wrapped with fiber reinforced resin) and their components. Also micrographs of composite samples, obtained through scanning electron microscopy (SEM), were studied to determine the failure mechanism of composite specimens aged in different environments. Results showed that immersion in aging media lowered the glass transition temperature (Tg) and enhanced apparent phase separation in the samples because of polymer plasticization. In water immersion, the Tg and the stiffness increased with time owing to continued resin curing. At ambient temperature, sustained load had little effect on the mechanical behavior of the aged samples. The extent of degradation was the least for samples aged in salt solution. Soaking in room‐temperature acid solution was most damaging to pure red oak wood samples. Six‐cycle aging did not damage the neat resin or the hybrid samples, whereas it damaged pure wood specimens. Therefore, the composite wrapping around the wood core of the hybrid sample protected it sufficiently, thereby preventing damage to the hybrid specimen during the aging process. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   
29.
In this paper, a new method for computing eigenvalue and eigenvector derivatives of asymmetric non‐conservative systems with distinct eigenvalues is presented. Several approaches have been proposed for eigenderivative analysis of systems with asymmetric and non‐positive‐definite mass, damping and stiffness matrices. The proposed formulation that is developed by combining the modal and algebraic methods neither have the complications of modal methods in calculating the complex left and right eigenvector derivatives nor suffer from numerical instability problems usually associated with algebraic methods. The method is applied to a functionally graded material (FGM) plate actively controlled by piezoelectric sensor/actuators. In this system, the feedback signal applied to each actuator patch is implemented as a function of the electric potential in its corresponding sensor patch. The use of this closed‐loop controlling system leads to a non‐self‐adjoint system with complex eigenvalues and eigenvectors. A finite element model is developed for static and dynamic analysis of closed‐loop controlled FGM plate. The first‐ and second‐order approximations of Taylor expansion are used to estimate the corresponding changes in the plate modal properties due to change in design parameters (the displacement feedback gains and the piezoelectric layer thickness in each S/A pair). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
30.
Multi-walled carbon nanotubes (MWCNTs) were grown by chemical vapor deposition. The effect of the composition of carbon paste electrode on its voltammograms was evaluated in basic solution with 5.0×10−5 M tryptophan (Trp). It was found that addition of MWCNTs to the carbon paste would generate the peak current of Trp because of its catalytic effect on the redox process. The pH strongly affects the peak potential of Trp. The best analytical response was obtained at pH 13.0. The anodic peak currents were proportional to Trp concentrations in the range of 1.0×10−9−1.0×10−4 M under the optimized experimental conditions. The detection limit was 2.2×10−10 M. The effect of potential scan rate on the peak potential and peak current of tryptophan was investigated. The correlation of the peak currents against v1/2 (v is the scan rate) is linear, which is very similar to a diffusion-controlled process. The proposed biosensor was applied to the determination of Trp in pharmaceuticals formulations successfully.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号