首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   7篇
电工技术   2篇
化学工业   56篇
金属工艺   1篇
建筑科学   1篇
能源动力   5篇
轻工业   23篇
水利工程   1篇
无线电   3篇
一般工业技术   12篇
冶金工业   2篇
自动化技术   12篇
  2022年   1篇
  2021年   10篇
  2020年   2篇
  2019年   7篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   8篇
  2012年   7篇
  2011年   14篇
  2010年   7篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1994年   4篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
排序方式: 共有118条查询结果,搜索用时 531 毫秒
91.
The effect of glass addition on the properties of BaO–TiO2-WO3 microwave dielectric material N-35, which has Q = 5900 and K = 35 at 7.2 GHz for samples sintered at 1360°C, was investigated. Several glasses including B2O3, SiO2, 5ZnO–2B2O3, and nine other commercial glasses were selected for this study. Among these glasses, one with a 5 wt% addition of B2O3 to N-35, when sintered at 1200°C, had the best dielectric properties: Q = 8300 and K = 34 at 8.5 GHz. Both Q and K increased with firing temperature as well as with density. The Q of N-35, when sintered with a ZnO–B2O3 glass system, showed a sudden drop in the sintering temperature to about 1000°C. The results of XRD, thermal analysis, and scanning electron microscopy indicated that the chemical reaction between the dielectric ceramics and glass had a greater effect on Q than on the density. The effects of the glass content and the mixing process on the densification and microwave dielectric properties are also presented. Ball milling improved the densification and dielectric properties of the N-35 sintered with ZnO–B2O3.  相似文献   
92.
Membrane proteins change their conformations in response to chemical and physical stimuli and transmit extracellular signals inside cells. Several approaches have been developed for solving the structures of proteins. However, few techniques can monitor real-time protein dynamics. The diffracted X-ray tracking method (DXT) is an X-ray-based single-molecule technique that monitors the internal motion of biomolecules in an aqueous solution. DXT analyzes trajectories of Laue spots generated from the attached gold nanocrystals with a two-dimensional axis by tilting (θ) and twisting (χ). Furthermore, high-intensity X-rays from synchrotron radiation facilities enable measurements with microsecond-timescale and picometer-spatial-scale intramolecular information. The technique has been applied to various membrane proteins due to its superior spatiotemporal resolution. In this review, we introduce basic principles of DXT, reviewing its recent and extended applications to membrane proteins and living cells, respectively.  相似文献   
93.
Chitinases belonging to the GH19 family have diverse loop structure arrangements. A GH19 chitinase from rye seeds (RSC-c) has a full set of (six) loop structures that form an extended binding cleft from -4 to +4 (“loopful”), while that from moss (BcChi-A) lacks several loops and forms a shortened binding cleft from -2 to +2 (“loopless”). We herein inserted a loop involved in sugar residue binding at subsites +3 and +4 of RSC-c (Loop-II) into BcChi-A (BcChi-A+L-II), and the thermal stability and enzymatic activity of BcChi-A+L-II were then characterized and compared with those of BcChi-A. The transition temperature of thermal unfolding decreased from 77.2 ˚C (BcChi-A) to 63.3 ˚C (BcChi-A+L-II) by insertion of Loop-II. Enzymatic activities toward the chitin tetramer (GlcNAc)4 and the polymeric substrate glycol chitin were also suppressed by the Loop-II insertion to 12 and 9 %, respectively. The Loop-II inserted into BcChi-A was found to be markedly flexible and disadvantageous for protein stability and enzymatic activity.  相似文献   
94.
95.
Origin recognition complex (ORC) binds to replication origins in eukaryotic DNAs and plays an important role in replication. Although yeast ORC is known to sequence-specifically bind to a replication origin, how human ORC recognizes a replication origin remains unknown. Previous genome-wide studies revealed that guanine (G)-rich sequences, potentially forming G-quadruplex (G4) structures, are present in most replication origins in human cells. We previously suggested that the region comprising residues 413–511 of human ORC subunit 1, hORC1413–511, binds preferentially to G-rich DNAs, which form a G4 structure in the absence of hORC1413–511. Here, we investigated the interaction of hORC1413-511 with various G-rich DNAs derived from human c-myc promoter and telomere regions. Fluorescence anisotropy revealed that hORC1413–511 binds preferentially to DNAs that have G4 structures over ones having double-stranded structures. Importantly, circular dichroism (CD) and nuclear magnetic resonance (NMR) showed that those G-rich DNAs retain the G4 structures even after binding with hORC1413–511. NMR chemical shift perturbation analyses revealed that the external G-tetrad planes of the G4 structures are the primary binding sites for hORC1413–511. The present study suggests that human ORC1 may recognize replication origins through the G4 structure.  相似文献   
96.
Effects of nitrogen content on the microstructure, hardness, and friction coefficient of Ti-Mo-N coating films were investigated. Ti-Mo-N films were deposited onto an AISI304 stainless steel substrate by reactive r.f. sputtering in the mixture of argon and nitrogen gases with various gas flow rates. The hardness and friction coefficients were measured by nanoindentation and ball-on-disk testing systems, respectively. The hardness of the Ti-Mo-N films increased with increasing a nitrogen gas flow rate ( f\textN2 ) \left( {f_{{{\text{N}}_{2} }} } \right) and showed a maximum hardness of about 30 GPa at a f\textN2 = 0.3 \textccm f_{{{\text{N}}_{2} }} = 0.3\,{\text{ccm}} . On the one hand, the films deposited at f\textN2 3 1.0  \textccm f_{{{\text{N}}_{2} }} \ge 1.0\;{\text{ccm}} showed a constant hardness value of approximately 25 GPa. On the other hand, the friction coefficient of the Ti-Mo-N film decreased with increasing N content and was 0.44 in the film deposited at f\textN2 = 2.0  \textccm. f_{{{\text{N}}_{2} }} = 2.0\;{\text{ccm}}.  相似文献   
97.
Single-phase lead lanthanum zirconate titanate (PLZT) solid solution powder was synthesized from the constituent oxides at ambient temperature through a mechanical alloying (MA) process and was then densified to fine-grained ceramics by sintering and hot-pressing. The anomalous photovoltaic effect (APV) and photoinduced strain of the resultant PLZT ceramics were investigated and analyzed in association with the influence of grain size. It was found that a photoinduced voltage up to 6000 V·cm−1 can be obtained as the grain size is reduced to 0.42 μm. This is extremely high and about three times that achievable in normal micrometer-grained PLZT ceramics. The maximum photoinduced strain of the PLZT ceramics with an average grain diameter of 0.54 μm reached 0.01%, which is equivalent to electric-field-induced strain of common piezoelectric materials.  相似文献   
98.
This paper reports the experimental results of processes used for the formation of whipped oils composed of vegetable oils (salad oil) and high‐melting fat crystals [fully hydrogenated rapeseed oil rich in behenic acid (FHR‐B)]. No emulsifier was added to form this whipped oil. Microprobe FT‐IR spectroscopy, synchrotron radiation microbeam X‐ray diffraction (SR‐μ‐XRD), polarized optical microscopy, and differential scanning calorimetry (DSC) were employed to observe fine fat crystal particles of the most stable polymorph of β (β‐fat crystal), FHR‐B, and their adsorption at the air–oil surface before, during, and after the formation of the whipped oil. The results obtained revealed the following: (1) The preparation of an organogel composed of salad oil and small fibrous β‐fat crystals using a special tempering procedure was a prerequisite for forming whipped oil. (2) The β‐fat crystals were adsorbed at the air–oil surface to encapsulate the air bubbles during the formation process of whipped oil. (3) The values of overrun of the whipped oil reached >200 % after an aeration time of 30 min at 20 °C. (4) The SR‐μ‐XRD experiments demonstrated that the lamellar planes of the β‐fat crystals near the air–oil surface were arranged almost parallel to the air–oil surface plane. The present study provides the first evidence that tiny fat crystal particles may cause aeration in liquid oils without the addition of other whip‐assisting substances such as emulsifier crystals.  相似文献   
99.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   

100.
A strategy for the N‐benzylation/benzylic C H benzylation cascade of anilines by the π‐benzylpalladium system using a water‐soluble palladium(0)/sodium diphenylphosphinobenzene‐3‐sulfonate (TPPMS) catalyst and benzyl alcohol in water has been developed. This tandem process is devised as a novel and efficient synthetic route for N‐(1,2‐diphenylethyl)anilines. Benzylic C H activation of a mono‐N‐benzylated intermediate with a π‐benzylpalladium(II) complex affords a bis‐π‐benzylated palladium(II) intermediate. The nucleophilic η1‐σ‐benzyl anion ligand attacks the electrophilic η3‐π‐benzyl ligand to give a dibenzylated product. The intermolecular competition between mono‐N‐benzylaniline and its monodeuterated form (monodeuterated at the benzylic group) with benzyl alcohol gave a KIE=4.6, suggesting that C H bond cleavage was involved in the rate‐determining step. Hammett studies on the rate constants of benzylation by various substituted anthranilic acids and mono‐N‐benzylanilines show a good correlation between the log(kX/kH) and the σ values of the respective substituents. From the slope, negative ρ values are obtained, suggesting that there is a build‐up of positive charge in the transition state. The reaction of anilines with electron‐donating and electron‐withdrawing groups affords the corresponding N‐(1,2‐diphenylethyl)anilines in moderate to good yields (54–86%). Interestingly, the reaction of anthranilic acids proceeded smoothly to give only the corresponding dibenzylated products in good to excellent yields (70–87%). The carboxyl group of the anthranilic acids acts as a directing group in the benzylic C H activation process.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号