首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7677篇
  免费   1092篇
  国内免费   527篇
电工技术   636篇
综合类   746篇
化学工业   1243篇
金属工艺   407篇
机械仪表   489篇
建筑科学   554篇
矿业工程   244篇
能源动力   198篇
轻工业   1081篇
水利工程   174篇
石油天然气   316篇
武器工业   72篇
无线电   779篇
一般工业技术   850篇
冶金工业   258篇
原子能技术   89篇
自动化技术   1160篇
  2024年   65篇
  2023年   248篇
  2022年   451篇
  2021年   647篇
  2020年   453篇
  2019年   338篇
  2018年   363篇
  2017年   407篇
  2016年   348篇
  2015年   468篇
  2014年   568篇
  2013年   571篇
  2012年   594篇
  2011年   623篇
  2010年   515篇
  2009年   474篇
  2008年   467篇
  2007年   407篇
  2006年   328篇
  2005年   222篇
  2004年   148篇
  2003年   130篇
  2002年   146篇
  2001年   102篇
  2000年   69篇
  1999年   52篇
  1998年   28篇
  1997年   14篇
  1996年   9篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1988年   2篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1951年   3篇
排序方式: 共有9296条查询结果,搜索用时 15 毫秒
991.
2D porous carbon nanomaterials have attracted tremendous attention in different disciplines especially for electrochemical catalysis. The significant advantage of such 2D materials is that nearly all their surfaces are exposed to the electrolyte and can take part in the electrochemical reaction. Here, a versatile active‐salt‐templating strategy to efficiently synthesize 2D porous carbon nanosheets from layered organic–inorganic hybrids is presented. The resulting heteroatom‐doped carbon nanosheets (NFe/CNs) exhibit exceptional performance for the oxygen‐reduction reaction and in Zn–air battery electrodes. The activity of the best catalyst within a series of NFe/CNs exceeds the performance of conventional carbon‐supported Pt catalysts in terms of onset potential (0.930 vs 0.915 V of Pt/C), half‐wave potential (0.859 vs 0.816 V of Pt/C), long‐time stability, and methanol tolerance. Also, when applied as a cathode catalyst in a zinc–air battery the NFe/CNs presented here outperform commercial Pt/C catalysts.  相似文献   
992.
Upconversion (UC) nanoparticles (UCNPs) have evoked considerable attention in many fields owing to their fascinating features. However, rigorous synthesis conditions and expensive raw materials often limit their further applications. Here, a novel hexagonal phase NaBiF4 UC matrix through a very facile method (one min only at room temperature) is synthesized. The nanoparticles show good monodispersity with uniform size. Under the 980 nm irradiation, Yb3+/Ln3+ (Ln = Er, Ho, Tm) codoped NaBiF4 nanoparticles show excellent UC luminescence (UCL). This super facile synthesis strategy and excellent matrix materials enable to achieve UCL in such low temperature, opening a new gateway for the UCNPs applied to a variety of areas in the future.  相似文献   
993.
Developing an effective theranostic nanoplatform remains a great challenge for cancer diagnosis and treatment. Here, BiOI@Bi2S3@BSA (bovine serum albumin) semiconductor heterojunction nanoparticles (SHNPs) for triple‐combination radio/photodynamic/photothermal cancer therapy and multimodal computed tomography/photoacoustic (CT/PA) bioimaging are reported. On the one hand, SHNPs possess strong X‐ray attenuation capability since they contain high‐Z elements, and thus they are anticipated to be a very competent candidate as radio‐sensitizing materials for radiotherapy enhancement. On the other hand, as a semiconductor, the as‐prepared SHNPs offer an extra approach for reactive oxygen species generation based on electron–hole pair under the irradiation of X‐ray through the photodynamic therapy process. This X‐ray excited photodynamic therapy obviously has better penetration depth in bio‐tissue. What's more, the SHNPs also possess well photothermal conversion efficiency for photothermal therapy, because Bi2S3 is a thin band semiconductor with strong near‐infrared absorption that can cause local overheat. In vivo tumor ablation studies show that synergistic radio/photodynamic/photothermal therapy achieves more significant therapeutic effect than any single treatment. In addition, with the strong X‐ray attenuation and high near‐infrared absorption, the as‐obtained SHNPs can also be applied as a multimodal contrast agent in CT/PA imaging.  相似文献   
994.
Advances in molecular imaging modalities have accelerated the diagnosis and treatment of human diseases. However, tumors less than 1 cm in size still remain difficult to localize by conventional means because of the difficulty in specific targeting/delivery to the tumor site. Furthermore, high nonspecific uptake in the major organs and persistent background retention results in low tumor-to-background ratio. The targeting and therapy of gastrointestinal stromal tumors (GIST) using nonsticky and renal clearable theranostic nanoparticles (a.k.a. H-Dots) are demonstrated. H-Dots not only target GIST for image-guided surgery, but also tailor the fate of anticancer drugs such as imatinib (IM) to the tumor site resulting in efficient treatment of unresectable GIST. In addition, H-Dots can monitor targetability, pharmacokinetics, and drug delivery, while also showing therapeutic efficacy in GIST-bearing xenograft mice following surgical resection. More importantly, IM loaded H-Dots exhibit lower uptake into the immune system, improved tumor selectivity, and increased tumor suppression compared to free IM, which accumulates in the spleen/liver. Precisely designed H-Dots can be used as a promising theranostic nanoplatform that can potentially reduce the side effects of conventional chemotherapies.  相似文献   
995.
Nanozyme-based tumor catalytic therapy has attracted widespread attention in recent years. However, its therapeutic outcomes are diminished by many factors in the tumor microenvironment (TME), such as insufficient endogenous hydrogen peroxide (H2O2) concentration, hypoxia, and immunosuppressive microenvironment. Herein, an immunomodulation-enhanced nanozyme-based tumor catalytic therapy strategy is first proposed to achieve the synergism between nanozymes and TME regulation. TGF-β inhibitor (TI)-loaded PEGylated iron manganese silicate nanoparticles (IMSN) (named as IMSN-PEG-TI) are constructed to trigger the therapeutic modality. The results show that IMSN nanozyme exhibits both intrinsic peroxidase-like and catalase-like activities under acidic TME, which can decompose H2O2 into hydroxyl radicals (•OH) and oxygen (O2), respectively. Besides, it is demonstrated that both IMSN and TI can regulate the tumor immune microenvironment, resulting in macrophage polarization from M2 to M1, and thus inducing the regeneration of H2O2, which can promote catalytic activities of IMSN nanozyme. The potent antitumor effect of IMSN-PEG-TI is proved by in vitro multicellular tumor spheroids (MCTS) and in vivo CT26-tumor-bearing mice models. It is believed that the immunomodulation-enhanced nanozyme-based tumor treatment strategy is a promising tool to kill cancer cells.  相似文献   
996.
997.
GH2132(A286)是析出强化型铁基高温合金,其含有多种合金化元素,为避免不合适的成分选择导致的综合性能失配,通过重点分析东北特钢提供的产品成分,解析国标成分区间的合理性,本文提出了一个更加合适的新成分标准形式。为此,引入“团簇加连接原子”结构模型,该模型将合金成分的结构载体表述为[中心-第一近邻](连接原子)的团簇成分式形式。首先将合金化元素分为基体Fe、稳定奥氏体的(Ni,Mn)、稳定铁素体的(Cr,Mo,V,Si,Ti,Al)、以及不进入团簇式的(C,P,S,B)。通过分析国标规定的成分区间和实际合金成分,指出合金的实际成分区间远小于国标范围,并由16原子的成分式限定:Fe(8.5~9.0)±0.25(Ni,Mn)4±0.25(Cr,Mo,V,Si,Ti,Al)3~3.5。进而揭示了同类元素内部的质量百分比协同变化关系,即24.6≤Ni+Mn ≤28.0和17.4≤Cr+0.6Mo+V+1.7Si+1.1Ti+1.8Al≤20.4。由此更合理地限定Mn、Si元素成分区间,并对东北特钢的合金成分提供了改进建议。  相似文献   
998.
Wang  JiaJun  Li  Li  Wang  ManFu  Zheng  Shuang  Cui  Yan  Liu  ShiMin  He  Ming  Song  Bo  Zhao  Mei  Zhang  ZhiHua 《Journal of Superconductivity and Novel Magnetism》2022,35(9):2327-2332
Journal of Superconductivity and Novel Magnetism - Magnetic and electronic structures of K1-xFe2Se2 (x?=?0.0, 0.2, 0.4, 0.6, and 0.8) in collinear antiferromagnetic state were studied...  相似文献   
999.
1000.
Han  YuYing  Liu  ZiLiang  Wang  Shuang  Wang  Wenxue  Wang  ChuanXing  Gao  ChuanHui 《Journal of Materials Science》2021,56(21):12486-12505
Journal of Materials Science - In this study, a novel functionalized graphene oxide(GO) sheet of polyaniline(PANI) was prepared by in situ polymerization of aniline. Fourier transform infrared...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号