首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87626篇
  免费   6237篇
  国内免费   2979篇
电工技术   4404篇
技术理论   9篇
综合类   4693篇
化学工业   15705篇
金属工艺   4525篇
机械仪表   5294篇
建筑科学   7094篇
矿业工程   2029篇
能源动力   2500篇
轻工业   5054篇
水利工程   1457篇
石油天然气   4597篇
武器工业   501篇
无线电   10538篇
一般工业技术   11402篇
冶金工业   4743篇
原子能技术   836篇
自动化技术   11461篇
  2024年   333篇
  2023年   1330篇
  2022年   2325篇
  2021年   3173篇
  2020年   2368篇
  2019年   2069篇
  2018年   2291篇
  2017年   2555篇
  2016年   2394篇
  2015年   2981篇
  2014年   4074篇
  2013年   5154篇
  2012年   5320篇
  2011年   5616篇
  2010年   4970篇
  2009年   4769篇
  2008年   4504篇
  2007年   4448篇
  2006年   4703篇
  2005年   4162篇
  2004年   2814篇
  2003年   2527篇
  2002年   2211篇
  2001年   2031篇
  2000年   2300篇
  1999年   2576篇
  1998年   2396篇
  1997年   1897篇
  1996年   1749篇
  1995年   1459篇
  1994年   1221篇
  1993年   884篇
  1992年   656篇
  1991年   543篇
  1990年   409篇
  1989年   369篇
  1988年   320篇
  1987年   176篇
  1986年   166篇
  1985年   112篇
  1984年   99篇
  1983年   63篇
  1982年   60篇
  1981年   54篇
  1980年   39篇
  1979年   32篇
  1978年   13篇
  1977年   33篇
  1976年   16篇
  1975年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
In this study, a series of organic–inorganic hybrid sol–gel materials consisting of a poly(methyl methacrylate) (PMMA) matrix and dispersed silica (SiO2) particles were successfully prepared through an organic‐acid‐catalyzed sol–gel route with N‐methyl‐2‐pyrrolidone as the mixing solvent. The as‐synthesized PMMA–SiO2 nanocomposites were subsequently characterized with Fourier transform infrared spectroscopy and transmission electron microscopy. The solid phase of organic camphor sulfonic acid was employed to catalyze the hydrolysis and condensation (i.e., sol–gel reactions) of tetraethyl orthosilicate in the PMMA matrix. The formation of the hybrid membranes was beneficial for the physical properties at low SiO2 loadings, especially for enhanced mechanical strength and gas barrier properties, in comparison with the neat PMMA. The effects of material composition on the thermal stability, thermal conductivity, mechanical strength, molecular permeability, optical clarity, and surface morphology of the as‐prepared hybrid PMMA–SiO2 nanocomposites in the form of membranes were investigated with thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, gas permeability analysis, ultraviolet–visible transmission spectroscopy, and atomic force microscopy, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
52.
A new organic‐solvent‐free water‐phase suspension method was used to synthesize partially epoxidized high trans‐1,4‐polyisoprene (TPI) to improve its properties, including oil resistance and wet‐skid resistance. The epoxidation was conducted in an aqueous peracetic acid solution and on the TPI granules prepared by a bulk precipitation method with supported titanium catalyst. The effects of the synthesis conditions, including reaction temperature, reaction time, and pH value, on the epoxy content were investigated. Epoxidized trans‐1,4‐polyisoprene (ETPI) with epoxy contents between 10 and 80% were obtained within 4 h. Both the amorphous and crystalline regions of TPI were epoxidized. The crystallization properties decreased with increasing epoxy content. ETPIs possessed lower mechanical properties than TPI but could be enhanced by vulcanization. The oil resistance and wet‐skid resistance were significantly improved after epoxidation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
53.
The synthesis of a p‐toluidine/formaldehyde (PTF) resin was performed, and the effects of the molar ratio of the individual monomers and the polymerization conditions on the structure of the PTF resin were studied. Fourier transform infrared and 13C‐NMR spectra were used to characterize the PTF. Wide‐angle X‐ray diffraction patterns revealed the crystalline structures of various PTFs. Polarized optical microscopy revealed that the molar ratio of the monomers had a strong effect on the crystalline morphologies. A longer polymerization time turned out a polymer with a higher intrinsic viscosity and molecular weight, which led to differences in the proton conductivity. All of the PTFs showed a higher proton conductivity than a commercial Nafion membrane at 90–100°C and 0% relative humidity. The proton conductivity of the PTF series could be improved by sulfonation with sulfuric acid and could be maintained after blending with polyurethane. Pure methanol could be used as a fuel source because of the insolubility and nonwetting properties of PTF in methanol to increase the output current density for a PTF membrane electrode assembly. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   
54.
Ri-Chao Zhang  Yi Xu  Ai Lu  Kemei Cheng  Yigang Huang  Zhong-Ming Li   《Polymer》2008,49(10):2604-2613
The crystalline morphology of poly(phenylene sulfide) (PPS) isothermally crystallized from the melt under shear has been observed by polarized optical microscope (POM) equipped with a CSS450 hot-stage. The shish–kebab-like fibrillar crystal structure is formed at a higher shear rate or for a longer shear time, which is ascribed to the tight aggregation of numerous oriented nuclei in the direction of shear. The crystallization induction time of PPS decreases with the shear time, indicating that the shear accelerates the formation of stable crystal nuclei. Under shear, the increase of spherulite growth rate results from highly oriented chains. The melting behavior of shear-induced crystallized PPS performed by differential scanning calorimetry (DSC) shows multiple melting peaks. The lower melting peak corresponds to melting of imperfect crystal, and the degree of crystal perfection decreases as the shear rate increases. The higher melting peak is related to the orientation of molecular chains. These oriented molecular chains form the orientation nuclei which have higher thermal stability than the kebab-like lamellae that are developed later. A new model based on the above observation has been proposed to explain the mechanism of shish–kebab-like fibrillar crystal formation under shear flow.  相似文献   
55.
Wear of ultrahigh‐molecular‐weight polyethylene (UHMWPE) and wear‐particle‐induced osteolysis and bone resorption are the major factors causing the failure of total joint replacements. It is feasible to improve the lubrication and reduce the wear of artificial joints. We need further understanding of the lubrication mechanism of the synovial fluid. The objective of this study is to evaluate the lubricating ability of three major components in the synovial fluid: albumin, globulin, and phospholipids. An accelerated wear testing procedure in which UHMWPE is rubbed against a microfabricated surface with controlled asperities has been developed to evaluate the lubrication behavior. An analysis of the wear particle dimensions and wear amount of the tests has provided insights for comparing their lubrication performance. It is concluded that the presence of biomolecules at the articulating interface may reduce friction. A higher concentration of a biological lubricant leads to a decrease in the wear particle width. In addition, in combination with the wear results and mechanical analysis, the roles of individual biomolecules contributing to friction and wear at the articulating interface are discussed. These results can help us to identify the role of the biomolecules in the boundary lubrication of artificial joints, and further development of lubricating additives for artificial joints may be feasible. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
56.
The water bamboo husk is one of major agricultural wastes in Taiwan. In this study, the powder obtained from the water bamboo husk was added to poly(lactic acid) (PLA) to form novel reinforced biodegradable composites. Morphologies, mechanical properties, and heat resistance of these water bamboo powder reinforced composites were investigated. The results indicate that the char yields were increased as plant powder was incorporated to PLA. In addition, the mechanical properties were also enhanced due to the addition of powders. The increments of storage moduli of PLA were about 50–200%. Moreover, the increments of loss moduli of PLA were about 70–200%. On the other hand, the Tg of PLA was slightly decreased by the addition of powder, and this may improve the brittle characteristics of PLA. Furthermore, this type of reinforced PLA would be more environmental friendly than the artificial additive‐reinforced one. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   
57.
黄岷 《陶瓷》2008,(12)
分析了湿法成形薄型陶瓷砖干燥的特点.具体讨论了微波干燥和少空气干燥方式在湿法薄形陶瓷砖干燥上中应用及干燥过程中坯体传动方式的选择。  相似文献   
58.
59.
管内覆丝网强化对流换热及阻力特性的实验研究   总被引:1,自引:1,他引:0  
通过实验对管内覆丝网管进行了强迫对流换热和阻力特性研究。结果表明:管内覆丝网使换热明显增强,阻力也相应增长。菱形丝网对角线距离与平行边距离之比对换热效果有决定作用,丝网厚度对换热的影响比较小,而丝网网格的大小对换热几乎没有影响,在相同的泵功率和几何条件下,换热系数最大增加21%。  相似文献   
60.
The two gene-duplicated cAMP binding domains in the regulatory subunits of cAMP dependent protein kinase are each comprised of an A helix, an eight-stranded beta-barrel, and a B and C helix (1). The A domain is required for high affinity binding to C, while the B domain regulates access to the A domain. Using a combination of a yeast two-hybrid screen coupled with deletion analysis, cAMP binding domain A of RI was dissected into two structurally and functionally distinct subsites, one that binds cAMP and another that binds the C subunit. The minimum stable subdomain required for binding to C in the 1-3 micromolar range is composed of residues 94-169, while residues 236-244, mapped to the C helix of cAMP binding domain A, were defined as a second surface necessary for high affinity (5-10 nanomolar) binding to C. This portion of the C helix, due to its position directly between the two subsites, serves as a molecular switch for either a cAMP-bound conformation or a C-bound conformation and can thus modulate interactions of cAMP binding domain A with cAMP, with C, and with cAMP binding domain B.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号