首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148318篇
  免费   22405篇
  国内免费   5789篇
电工技术   8410篇
技术理论   2篇
综合类   8051篇
化学工业   33497篇
金属工艺   7090篇
机械仪表   7983篇
建筑科学   10560篇
矿业工程   3590篇
能源动力   3961篇
轻工业   14017篇
水利工程   2472篇
石油天然气   5855篇
武器工业   1001篇
无线电   19747篇
一般工业技术   23145篇
冶金工业   5684篇
原子能技术   1318篇
自动化技术   20129篇
  2024年   481篇
  2023年   1644篇
  2022年   3329篇
  2021年   4819篇
  2020年   4759篇
  2019年   5759篇
  2018年   5974篇
  2017年   6727篇
  2016年   6887篇
  2015年   8467篇
  2014年   9459篇
  2013年   11702篇
  2012年   10307篇
  2011年   10563篇
  2010年   9999篇
  2009年   9858篇
  2008年   9067篇
  2007年   8663篇
  2006年   8076篇
  2005年   6880篇
  2004年   5089篇
  2003年   4526篇
  2002年   4347篇
  2001年   3697篇
  2000年   3296篇
  1999年   2690篇
  1998年   1711篇
  1997年   1480篇
  1996年   1327篇
  1995年   1073篇
  1994年   883篇
  1993年   619篇
  1992年   510篇
  1991年   383篇
  1990年   309篇
  1989年   253篇
  1988年   229篇
  1987年   142篇
  1986年   126篇
  1985年   62篇
  1984年   70篇
  1983年   35篇
  1982年   49篇
  1981年   29篇
  1980年   32篇
  1979年   23篇
  1978年   14篇
  1977年   10篇
  1976年   16篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Nanocomposites based on poly(butylene terephthalate) (PBT) and an organoclay (Cloisite 30B) were prepared by melt blending using a twin‐screw extruder. Two kinds of PBTs, ie PBT‐A and PBT‐B, with different inherent viscosities (ηinh), were used for this study (ηinh of PBT‐A and PBT‐B were 0.74 and 1.48, respectively). Dispersion of the clay layers in the PBT nanocomposites was characterized by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile and dynamic mechanical properties and non‐isothermal crystallization temperatures of the nanocomposites were also examined. Nanocomposites based on the higher‐viscosity PBT (PBT‐B) showed a higher degree of exfoliation of the clay and a higher reinforcing effect when compared to the composites based on the lower‐viscosity PBT (PBT‐A). The clay nanolayers dispersed in PBT matrices lead to increases in the non‐isothermal crystallization temperatures of the PBTs, with such increases being more significant for the PBT‐B nanocomposites than for the PBT‐A nanoocomposites. Copyright © 2004 Society of Chemical Industry  相似文献   
22.
Carboxyl‐terminated butadiene‐acrylonitrile rubber (CTBN) has often been used to improve the toughness of cyanate ester (CE) resin while sacrificing modulus and thermostability. In this paper, the addition of the appropriate amount of epoxy resin (EP) to the CE/CTBN system is shown to not only increase the modulus and thermostability of the blend, but also improve the toughness. The values of impact strength showed a maximum for the CE/CTBN/EP 100/5/5 blend. The temperature of 10 % weight loss (T10) improves from 376 °C for CE/CTBN 100/5 to 407 °C for the CE/CTBN/EP 100/5/2.5 blend. It is proposed that addition of the appropriate amount of EP can decrease the mobility and increase the stability of CTBN via the reaction between the terminal carboxyl group of CTBN and the hydroxyl group of EP. But a very high EP concentration will decrease the crosslinking density of CE, consequently reducing the mechanical properties and thermostability of the blends. Copyright © 2004 Society of Chemical Industry  相似文献   
23.
From chloromethylated polyimide, a useful starting material for modification of aromatic polyimides, a thermocurable transparent polyimide having acrylate side groups was prepared. In the presence of 1,8‐diazabicyclo[5,4,0]undec‐7‐ene, chloromethylated polyimide was esterified with acrylic acid to synthesize poly(imide methylene acrylate). The polymer was soluble in organic solvent, which makes it possible to prepare a planar film by spin coating. The polymer film became insoluble after thermal treatment at 230 °C for 30 min. Optical transparency of the film at 400 nm (for 1 µm thickness) was higher than 98 % and not affected by further heating at 230 °C for 250 min. Adhesion properties measured by the ASTM D3359‐B method ranged from 4B to 5B. Preliminary results of planarization testing showed a high degree of planarization (DOP) value (>0.53). These properties demonstrate that poly(imide methylene acrylate) could be utilized as a thermocurable transparent material in fabricating display devices such as TFT‐LCD. Copyright © 2004 Society of Chemical Industry  相似文献   
24.
25.
The production and properties of blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalene 2,6‐dicarboxylate) (PEN) with three modified clays are reported. Octadecylammonium chloride and maleic anhydride (MAH) are used to modify the surface of the montmorillonite–Na+ clay particles (clay–Na+) to produce clay–C18 and clay–MAH, respectively, before they are mixed with the PET/PEN system. The transesterification degree, hydrophobicity and the effect of the clays on the mechanical, rheological and thermal properties are analysed. The PET–PEN/clay–C18 system does not show any improvements in the mechanical properties, which is attributed to poor exfoliation. On the other hand, in the PET–PEN/clay–MAH blends, the modified clay restricts crystallization of the matrix, as evidenced in the low value of the crystallization enthalpy. The process‐induced PET–PEN transesterification reaction is affected by the clay particles. Clay–C18 induces the largest proportion of naphthalate–ethylene–terephthalate (NET) blocks, as opposed to clay–Na+ which renders the lowest proportion. The clay readily incorporates in the bulk polymer, but receding contact‐angle measurements reveal a small influence of the particles on the surface properties of the sample. The clay–Na+ blend shows a predominant solid‐like behaviour, as evidenced by the magnitude of the storage modulus in the low‐frequency range, which reflects a high entanglement density and a substantial degree of polymer–particle interactions. Copyright © 2005 Society of Chemical Industry  相似文献   
26.
Poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐para‐phenylene vinylene] (MEH‐PPV)/silica nanoparticle hybrid films were prepared and characterised. Three kinds of materials were compared: parent MEH‐PPV, MEH‐PPV/silica (hybrid A films), and MEH‐PPV/coupling agent MSMA/silica (hybrid B films), in which MSMA is 3‐(trimethoxysilyl) propyl methacrylate. It was found that the hybrid B films could significantly prevent macrophase separation, as evidenced by scanning electron and fluorescence microscopy. Furthermore, the thermal characteristics of the hybrid films were largely improved in comparison with the parent MEH‐PPV. The UV‐visible absorption spectra suggested that the incorporation of MSMA‐modified silica into MEH‐PPV could confine the polymer chain between nanoparticles and thus increase the conjugation length. The photoluminescence (PL) studies also indicated enhancement of the PL intensity and quantum efficiency by incorporating just 2 wt% of MSMA‐modified silica into MEH‐PPV. However, hybrid A films did not show such enhancement of optoelectronic properties as the hybrid B films. The present study suggests the importance of the interface between the luminescent organic polymers and the inorganic silica on morphology and optoelectronic properties. Copyright © 2004 Society of Chemical Industry  相似文献   
27.
Low dielectric poly[methylsilsesquioxane‐ran‐trifluoropropylsilsesquioxane‐ran‐(2,4,6,8‐tetramethyl‐2,4,6,8‐tetraethylenecyclotetrasiloxane)silsesquioxane]s {P[M‐ran‐TFP‐ran‐(TCS)]SSQs} having various compositions were synthesized using trifluoropropyl trimethoxysilane, methyl trimethoxysilane and 2,4,6,8‐tetramethyl‐2,4,6,8‐tetra(trimethoxysilylethyl)cyclotetrasiloxane. The chemical composition of the polymers and the content of SiOH end‐groups were controlled by adjusting the reaction conditions, and they were characterized by 1H‐NMR. The thermally decomposable trifluoropropyl groups on the P[M‐ran‐TFP‐ran‐(TCS)]SSQ backbone and heptakis(2,3,6‐tri‐O‐methyl)‐β‐cyclodextrin (CD) were employed as pore generators. The dielectric constants of the porous CD/P[M‐ran‐TFP‐ran‐(TCS)]SSQ films were in the range 2.0–2.7 (at 100 kHz) depending on the concentration of the porogens, and showed no change over 4 days under aqueous conditions. The pore size of the films showed a bimodal distribution, with diameters of ca 0.5–1.0 nm for those originating from the trifluoropropyl groups and 1.7 nm from the CD. The elastic modulus and hardness of the 30 vol% CD‐blended film with a dielectric constant of 2.26 were 2.40 and 0.38 GPa, respectively, as determined by a nanoindenter. Copyright © 2005 Society of Chemical Industry  相似文献   
28.
29.
Previous work has shown that the enzymatic hydrolysis of sugarcane bagasse could be greatly enhanced by peracetic acid (PAA) pretreatment. There are several factors affecting the enzymatic digestibility of the biomass, including lignin and hemicelluloses content, cellulose crystallinity, acetyl group content, accessible surface area and so on. The objective of this work is to analyze the mechanism of the enhancement of enzymatic digestibility caused by PAA pretreatment. Delignification resulted in an increase of the surface area and reduction of the irreversible absorption of cellulase, which helped to increase the enzymatic digestibility. The Fourier transform infrared (FTIR) spectrum showed that the absorption peaks of aromatic skeletal vibrations were weakened or disappeared after PAA pretreatment. However, the infrared crystallization index (N.O'KI) was increased. X‐ray diffraction (XRD) analysis indicated that the crystallinity of PAA‐treated samples was increased owing to the partial removal of amorphous lignin and hemicelluloses and probable physical change of cellulose. The effect of acetyl group content on enzymatic digestibility is negligible compared with the degree of delignification and crystallinity. The results indicate that enhancement of enzymatic digestibility of sugarcane bagasse by PAA pretreatment is achieved mainly by delignification and an increase in the surface area and exposure of cellulose fibers. Copyright © 2008 Society of Chemical Industry  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号