The purpose of this study was to investigate the photocatalytic oxidation of a reactive azo dye. The photocatalytic activity of the TiO2 was studied using a reactor equipped with UV-A sources, with maximum emission at 365 nm. The photocatalytic activity of the TiO2 powder (99.9% anatase) and thin films has been measured through the decomposition of methyl orange solutions. The thin film was prepared by doctor blade and spray pyrolysis deposition (SPD). The TiO2 suspensions were prepared at 1 g/L concentration, and the initial methyl orange concentration was fixed at 7.8125 mg/L. The influence of the TiO2 (powder or thin films) and/or O2 and H2O2 on the photobleaching rate, was tested under different experiments, at pH = 5. Thin films (doctor blade) of TiO2 formed of mezo-sized aggregates formed of nanosized anatase crystallites show better photobleaching efficiency than thin film (SPD) due to their large internal surface. The rate is even higher in H2O2 compared to oxygen environment. 相似文献
In the present study, we report enhanced antimicrobial properties of 29 and 23 nm silver nanoparticles (Ag NPs) obtained by
electrochemical synthesis in poly(amide-hydroxyurethane) media. Antibacterial activity assessed by disk diffusion method indicates
that silver nanoparticles produced inhibition zones for both Escherichia coli and Staphylococcus aureus depending on silver concentration. The bacterial growth curve performed in the presence of silver nanoparticles showed a
stronger antibacterial effect at lower concentrations than those described in the earlier reports. The effect was both dose
and size dependent and was more pronounced against Gram negative bacteria than Gram positive one. The smallest Ag NPs used
had a bactericidal effect resulting in killing E. coli cells. Scanning electron microscopy analysis indicated major damage and morphology changes of the silver nanoparticles treated
bacterial cells. The major mechanism responsible for the antibacterial effect probably consists in clusters formation and
nanoparticles anchorage to the bacterial cell surface. 相似文献
Producing sprouts directly during space missions may represent an interesting opportunity to offer high-quality fresh ready to eat food to the astronauts. The goal of this work was to compare, in terms of growth and nutritional quality, rocket (Eruca sativa Mill.) seedlings grown in the International Space Station during the ENEIDE mission with those grown in a ground-based experiment (in presence and absence of clinorotation). The rocket seedlings obtained from the space-experiment were thinner and more elongated than those obtained in the ground-based experiment. Cotyledons were often closed in the seedlings grown in the space experiment. Quantitative (germination, fresh and dry weight) and qualitative (glucose, fructose, sucrose and starch) traits of rocket seedling were negatively affected by micrograv-ity, especially those recorded on seedlings grown under real microgravity conditions The total chlorophyll, and carotenoids of seedlings obtained in the space experiment were strongly reduced in comparison to those obtained in the ground-based experiment (presence and absence of clinorotation). The results showed that it is possible to produce rocket seedlings in the ISS; however, further studies are needed to define the optimal environmental conditions for producing rocket seedlings with high nutritional value 相似文献
We address the problem of specializing a constraint logic program w.r.t. a constrained atom which specifies the context of use of the program. We follow an approach based on transformation rules and strategies. We introduce a novel transformation rule, called contextual constraint replacement, to be combined with variants of the traditional unfolding and folding rules. We present a general Partial Evaluation Strategy for automating the application of these rules, and two additional strategies: the Context Propagation Strategy which is instrumental for the application of our contextual constraint replacement rule, and the Invariant Promotion Strategy for taking advantage of invariance properties of the computation. We show through some examples the power of our method and we compare it with existing methods for partial deduction of constraint logic programs based on extensions of Lloyd and Shepherdson's approach. 相似文献
An analysis of the hardness of resolution of random 3-SAT instances using the Davis-Putnam-Loveland-Logemann (DPLL) algorithm slightly below threshold is presented. While finding a solution for such instances demands exponential effort with high probability, we show that an exponentially small fraction of resolutions require a computation scaling linearly in the size of the instance only. We compute analytically this exponentially small probability of easy resolutions from a large deviation analysis of DPLL with the Generalized Unit Clause search heuristic, and show that the corresponding exponent is smaller (in absolute value) than the growth exponent of the typical resolution time. Our study therefore gives some quantitative basis to heuristic restart solving procedures, and suggests a natural cut-off cost (the size of the instance) for the restart. 相似文献
Decomposing a two-dimensional window (i.e., the region specified by the cross product of two closed intervals over a given two-dimensional space) into its maximal quadtree blocks means to find the set of black quadrants that would be obtained by representing the region covered by the window using a quadtree. In this paper we propose an optimal O(n) time algorithm for decomposing a square window of size embedded in an image space of pixel elements, thus improving the O(n log log T) time algorithm of Aref and Samet [2]. As a direct consequence of this new faster algorithm, classical window operations on main memory quadtree based data structures can be solved more efficiently. In particular, we show that the exist and report queries on the incomplete pyramid [1] and on the up-down pyramid [8] can be solved in O(n) time, which is optimal. Received: 1 September 1997 / 28 October 1998 相似文献
Structural alterations anisotropy-based measured for different areas for the most common types of dementia diseases could be a biomarker of brain impairment. The current work aims to assess whether texture anisotropy can discriminate both healthy versus Alzheimer’s and Pick’s patients based on regional evaluation while maintaining high predictive power. The investigated area is reduced from the whole-brain surface to three major lobes (i.e., frontal, temporal and parietal). A predictive model was proposed to associate a disease with a specific area in the brain based on the anisotropy values. Simultaneous analysis of 1680 measurements from 105 brain magnetic resonance images acquired as T2w and PD sequences was performed to establish the significance of the model. The cerebral calcinosis disease has been used as artificial ground truth. The association based on textural anisotropy between targeted diseases and control patients was performed by using Pearson’s correlation coefficients. A new proposed consistency index investigated the texture anisotropy relevance for all image’s types and all analyzed classes and regions. The validation study is based on area under the receiver-operating characteristic curve that depicted the overall diagnostic performance of the texture anisotropy in each region. The proposed model demonstrated that texture anisotropy is accurate solution in diagnosis of Alzheimer’s and Pick’s diseases when the investigated area is reduced to major lobes, with sensitivity >90% and specificity >80%.
Scientists are exploring elastic and soft forms of robots, electronic skin and energy harvesters, dreaming to mimic nature and to enable novel applications in wide fields, from consumer and mobile appliances to biomedical systems, sports and healthcare. All conceivable classes of materials with a wide range of mechanical, physical and chemical properties are employed, from liquids and gels to organic and inorganic solids. Functionalities never seen before are achieved. In this review we discuss soft robots which allow actuation with several degrees of freedom. We show that different actuation mechanisms lead to similar actuators, capable of complex and smooth movements in 3d space. We introduce latest research examples in sensor skin development and discuss ultraflexible electronic circuits, light emitting diodes and solar cells as examples. Additional functionalities of sensor skin, such as visual sensors inspired by animal eyes, camouflage, self‐cleaning and healing and on‐skin energy storage and generation are briefly reviewed. Finally, we discuss a paradigm change in energy harvesting, away from hard energy generators to soft ones based on dielectric elastomers. Such systems are shown to work with high energy of conversion, making them potentially interesting for harvesting mechanical energy from human gait, winds and ocean waves. 相似文献