首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1110篇
  免费   86篇
  国内免费   3篇
电工技术   31篇
综合类   1篇
化学工业   235篇
金属工艺   12篇
机械仪表   44篇
建筑科学   29篇
矿业工程   2篇
能源动力   26篇
轻工业   108篇
水利工程   7篇
石油天然气   3篇
无线电   195篇
一般工业技术   254篇
冶金工业   99篇
原子能技术   4篇
自动化技术   149篇
  2024年   4篇
  2023年   16篇
  2022年   36篇
  2021年   55篇
  2020年   23篇
  2019年   30篇
  2018年   39篇
  2017年   38篇
  2016年   43篇
  2015年   33篇
  2014年   52篇
  2013年   64篇
  2012年   74篇
  2011年   78篇
  2010年   35篇
  2009年   48篇
  2008年   48篇
  2007年   44篇
  2006年   41篇
  2005年   22篇
  2004年   40篇
  2003年   19篇
  2002年   29篇
  2001年   25篇
  2000年   21篇
  1999年   29篇
  1998年   49篇
  1997年   24篇
  1996年   18篇
  1995年   11篇
  1994年   9篇
  1993年   18篇
  1992年   3篇
  1991年   6篇
  1990年   7篇
  1989年   6篇
  1988年   4篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1977年   4篇
  1976年   7篇
  1971年   2篇
  1968年   1篇
  1962年   3篇
排序方式: 共有1199条查询结果,搜索用时 15 毫秒
31.
Deep‐blue fluorescent compounds are particularly important in organic light‐emitting devices (OLEDs). A donor–accepotor (DA)‐type blue‐emitting compound, 1‐(10‐(4‐methoxyphenyl)anthracen‐9‐yl)‐4‐(10‐(4‐cyanophenyl)anthracen‐9‐yl)benzene ( BD3 ), is synthesized, and for comparison, a nonDA‐type compound, 1,4‐bis(10‐phenylanthracene‐9‐yl)benzene ( BD1 ) and a weak DA‐type compound, 1‐(10‐phenylanthracen‐9‐yl)‐4‐(10‐(4‐cyanophenyl)anthracen‐9‐yl)‐benzene ( BD2 ), are also synthesized. The twisted conformations of the two anthracene units in the compounds, confirmed by single crystal X‐ray analysis, effectively prevent π‐conjugation, and the compound shows deep‐blue photoluminescence (PL) with a high PL quantum efficiency, almost independent of the solvent polarity, resulting from the absence of an intramolecular charge transfer state. The DA‐type molecule BD3 in a non‐doped device exhibits a maximum external quantum efficiency (EQE) of 4.2% with a slight roll‐off, indicating good charge balance due to the DA‐type molecular design. In the doped device with 4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (CBP) host, the BD3 exhibits higher EQE than 10% with Commission International de L'Eclairge (CIE) coordinates of (0.15, 0.06) and a narrow full‐width at half‐maximum of 45 nm, which is close to the CIE of the high definition television standard blue.  相似文献   
32.
Infrared, visible, and multispectral photodetectors are important components for sensing, security and electronics applications. Current fabrication of these devices is based on inorganic materials grown by epitaxial techniques which are not compatible with low‐cost large‐scale processing. Here, air‐stable multispectral solution‐processed inorganic double heterostructure photodetectors, using PbS quantum dots (QDs) as the photoactive layer, colloidal ZnO nanoparticles as the electron transport/hole blocking layer (ETL/HBL), and solution‐derived NiO as the hole transport/electron blocking layer (HTL/EBL) are reported. The resulting device has low dark current density of 20 nA cm‐2 with a noise equivalent power (NEP) on the order of tens of picowatts across the detection spectra and a specific detectivity (D*) value of 1.2 × 1012 cm Hz1/2 W‐1. These parameters are comparable to commercially available Si, Ge, and InGaAs photodetectors. The devices have a linear dynamic range (LDR) over 65 dB and a bandwidth over 35 kHz, which are sufficient for imaging applications. Finally, these solution‐processed inorganic devices have a long storage lifetime in air, even without encapsulation.  相似文献   
33.
Intramolecular donor–acceptor structures prepared by covalently binding conjugated octylphenanthrenyl‐imidazole moieties onto the side chains of regioregular poly(3‐hexylthiophene)s exhibit lowered bandgaps and enhanced electron transfer compared to the parent polymer, e.g., conjugation of 90 mol% octylphenanthrenyl‐imidazole moieties onto poly(3‐hexylthiophene) chains reduces the optical bandgap from 1.91 to 1.80 eV, and the electron transfer probability is at least twice as high as that of pure poly(3‐hexylthiophene) when blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester. The lowered bandgap and the fast charge transfer both contribute to much higher external quantum efficiencies, thus much higher short‐circuit current densities for copolymers presenting octylphenanthrenyl‐imidazole moieties, relative to those of pure poly(3‐hexylthiophene)s. The short‐circuit current density of a device prepared from a copolymer presenting 90 mol% octylphenanthrenyl‐imidazole moieties is 13.7 mA · cm?2 which is an increase of 65% compared to the 8.3 mA · cm?2 observable for a device containing pure poly(3‐hexylthiophene). The maximum power conversion efficiency of this particular copolymer is 3.45% which suggest that such copolymers are promising polymeric photovoltaic materials.  相似文献   
34.
Distribution of interface states at the emitter–base heterojunctions in heterostructure bipolar transistors (HBTs) is characterized by using current–voltage characteristics using sub-bandgap photonic excitation. Sub-bandgap photonic source with a photon energy Eph which is less than the energy bandgap Eg (Eg,GaAs = 1.42, Eg,AlGaAs = 1.76 eV) of emitter, base, and collector of HBTs, is employed for exclusive excitation of carriers only from the interface states in the photo-responsive energy range at emitter–base heterointerface. The proposed method is applied to an Al0.3Ga0.7As/GaAs HBT (AE = WE × LE = 250 × 100 μm2) with Eph = 0.943 eV and Popt = 3 mW. Extracted interface trap density Dit was observed to be Dit,max  4.2 × 1012 eV−1 cm−2 at emitter–base heterointerface.  相似文献   
35.
The rapidly increasing solar conversion efficiency (PCE) of hybrid organic–inorganic perovskite (HOIP) thin-film semiconductors has triggered interest in their use for direct solar-driven water splitting to produce hydrogen. However, application of these low-cost, electronic-structure-tunable HOIP tandem photoabsorbers has been hindered by the instability of the photovoltaic-catalyst-electrolyte (PV+E) interfaces. Here, photolytic water splitting is demonstrated using an integrated configuration consisting of an HOIP/n+silicon single junction photoabsorber and a platinum (Pt) thin film catalyst. An extended electrochemical (EC) lifetime in alkaline media is achieved using titanium nitride on both sides of the Si support to eliminate formation of insulating silicon oxide, and as an effective diffusion barrier to allow high-temperature annealing of the catalyst/TiO2-protected-n+silicon interface necessary to retard electrolytic corrosion. Halide composition is examined in the (FA1-xCsx)PbI3 system with a bandgap suitable for tandem operation. A fill factor of 72.5% is achieved using a Spiro-OMeTAD-hole-transport-layer (HTL)-based HOIP/n+Si solar cell, and a high photocurrent density of −15.9 mA cm−2 (at 0 V vs reversible hydrogen electrode) is attained for the HOIP/n+Si/Pt photocathode in 1 m NaOH under simulated 1-sun illumination. While this thin-film design creates stable interfaces, the intrinsic photo- and electro-degradation of the HOIP photoabsorber remains the main obstacle for future HOIP/Si tandem PEC devices.  相似文献   
36.
The Elmore delay model is the most popular and efficient delay model used for analytical delay estimation. Closed-form delay formulas are useful for circuit design, timing-driven physical design, synthesis, and optimization. As signal rise time becomes faster and the line resistance becomes smaller from copper technology, the significance of inductance increases. Both RC and RLC delays are a strong function of signal rise time. We propose a novel and efficient delay modeling method based on nondimensionalization to consider finite input rise time as an improvement over the Elmore's approach. To further improve the accuracy of the delay model, a new correction method, effective distance correction factor (EDCF), is proposed to consider resistive shielding of downstream capacitance. EDCF can be used to correct the delays for both RC and RLC tree structures. The proposed delay modeling method was applied to a number of nets selected from an integrated circuit (IC) design, and the delay estimation results were compared with HSPICE simulations. The new delay model retains the efficiency and simplicity of the Elmore delay model with significantly improved accuracy.  相似文献   
37.
Robust coatable polarizer is fabricated by the self‐assembly of lyotropic chromonic liquid crystals and subsequent photo‐polymerizing processes. Their molecular packing structures and optical behaviors are investigated by the combined techniques of microscopy, scattering and spectroscopy. To stabilize the oriented Sunset Yellow FCF (H‐SY) films and to minimize the possible defects generated during and after the coating, acrylic acid (AA) is added to the H‐SY/H2O solution and photo‐polymerized. Utilizing cross‐polarized optical microscopy, phase behaviors of the H‐SY/H2O/AA solution are monitored by varying the compositions and temperatures of the solution. Based on the experimental results of two‐dimensional wide angle X‐ray diffraction and selected area electron diffraction, the H‐SY crystalline unit cell is determined to be a monoclinic structure with the dimensions of a = 1.70 nm, b = 1.78 nm, c = 0.68 nm, α = β = 90.0° and γ = 84.5°. The molecular arrangements in the oriented H‐SY films were further confirmed by polarized Fourier‐transform infrared spectroscopy. The polymer‐stabilized H‐SY films show good mechanical and chemical stabilities with a high polarizability. Additionally, patterned polarizers are fabricated by applying a photo‐mask during the photo‐polymerization of AA, which may open new doors for practical applications in electro‐optic devices.  相似文献   
38.
Self-catalyzed GaAs nanowires (NWs) are grown on Si (111) substrates by molecular-beam epitaxy. The effect of different closing sequences of the Ga and As cell shutters on the morphology and structural phase of GaAs NWs is investigated. For the sequences of closing the Ga and As cell shutters simultaneously or closing the As cell shutter 1 min after closing the Ga cell shutter, the NWs grow vertically to the substrate surface. In contrast, when the As cell shutter is closed first, maintaining the Ga flux is found to be critical for the following growth of GaAs NWs, which can change the growth direction from[111] to <111>. The evolution of the morphology and structural phase transition at the tips of these GaAs NWs confirm that the triple-phase-line shift mode is at work even for the growth with different cell shutter closing sequences. Our work will provide new insights for better understanding of the growth mechanism and realizing of the morphology and structure control of the GaAs NWs.  相似文献   
39.
A type of joint utility function-based scheduling is proposed for two-way communication services in wireless networks. The scheduling of uplink and downlink services is done jointly so that the base station selects a user efficiently and fairly while considering the channel state of both the uplink and the downlink. Because a user generally has two communication links, an uplink and a downlink, the overall satisfaction with a communication service can be formulated as the sum of the quality of the uplink and downlink services. However, most of the previous types of scheduling for the uplink and downlink were designed separately and independently. This paper proposes a joint scheduling algorithm for integrated uplink and downlink services: a base station selects a user while simultaneously considering both the uplink channel state and the downlink channel state. An analytical model is developed for the purpose of determining the scheduling metric, the system throughput, and the level of fairness. The numerical and computer simulation results show that in comparison with conventional proportional fair scheduling the proposed joint scheduling achieves a better throughput while satisfying the fairness among users.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号