首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   14篇
电工技术   2篇
化学工业   51篇
金属工艺   2篇
机械仪表   6篇
建筑科学   6篇
能源动力   5篇
轻工业   28篇
水利工程   2篇
石油天然气   1篇
无线电   55篇
一般工业技术   45篇
冶金工业   22篇
原子能技术   2篇
自动化技术   45篇
  2023年   3篇
  2022年   6篇
  2021年   17篇
  2020年   7篇
  2019年   7篇
  2018年   12篇
  2017年   9篇
  2016年   8篇
  2015年   10篇
  2014年   11篇
  2013年   15篇
  2012年   14篇
  2011年   20篇
  2010年   7篇
  2009年   7篇
  2008年   21篇
  2007年   16篇
  2006年   29篇
  2005年   9篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1987年   2篇
  1981年   2篇
  1976年   2篇
  1973年   2篇
  1970年   2篇
  1958年   1篇
排序方式: 共有272条查询结果,搜索用时 15 毫秒
11.
This work describes a class of complex combining three dithienylethene units and a lanthanide ion used as an optical system displaying a double encryption method: i) a colorful code, drawn and erased under UV and visible irradiations respectively, due to coloration and discoloration of the photochromic entities, and ii) a concomitant gradual disappearance and progressive restoration of the associated lanthanide ion luminescence triggered with the same stimuli. The innovation of the system stems from the emission color tunability, i.e., with either a lanthanide ion emitting only in the visible range (Eu3+) or with another lanthanide ion emitting only in the near infrared (NIR) range (Yb3+), therefore observable, or not, to the naked eye. This system is the very first one to achieve efficient repeatable modulation of pure NIR luminescence on photochemical command. Furthermore, it is proven to be highly efficient when embedded in a PDMS polymer opening real opportunities for practical applications as anti‐counterfeiting.  相似文献   
12.
The bottom‐up design of polymer films exhibiting quadratic nonlinear optical properties that can be tuned optically and chemically is described. The polymer matrices are doped with metal‐containing chromophores built around a ZnII core and photoisomerizable ligands with two different geometries. These molecules possess specifically designed photophysical and nonlinear optical properties to be used towards all‐optical poling, an interference process between one‐ and two‐photon excitations that locally induces macroscopic second‐order effects in polymer films. It is shown that grafting the molecules onto the polymer chains improves the stability of the macroscopic photoinduced nonlinearity in the films.  相似文献   
13.
Compared to small molecule process analytical technology (PAT) applications, biotechnology product PAT applications have certain unique challenges and opportunities. Understanding process dynamics of bioreactor cell culture process is essential to establish an appropriate process control strategy for biotechnology product PAT applications. Inline spectroscopic techniques for real time monitoring of bioreactor cell culture process have the distinct potential to develop PAT approaches in manufacturing biotechnology drug products. However, the use of inline Fourier transform infrared (FTIR) spectroscopic techniques for bioreactor cell culture process monitoring has not been reported. In this work, real time inline FTIR Spectroscopy was applied to a lab scale bioreactor mAb IgG3 cell culture fluid biomolecular dynamic model. The technical feasibility of using FTIR Spectroscopy for real time tracking and monitoring four key cell culture metabolites (including glucose, glutamine, lactate, and ammonia) and protein yield at increasing levels of complexity (simple binary system, fully formulated media, actual bioreactor cell culture process) was evaluated via a stepwise approach. The FTIR fingerprints of the key metabolites were identified. The multivariate partial least squares (PLS) calibration models were established to correlate the process FTIR spectra with the concentrations of key metabolites and protein yield of in-process samples, either individually for each metabolite and protein or globally for all four metabolites simultaneously. Applying the 2nd derivative pre-processing algorithm to the FTIR spectra helps to reduce the number of PLS latent variables needed significantly and thus simplify the interpretation of the PLS models. The validated PLS models show promise in predicting the concentration profiles of glucose, glutamine, lactate, and ammonia and protein yield over the course of the bioreactor cell culture process. Therefore, this work demonstrated the technical feasibility of real time monitoring of the bioreactor cell culture process via FTIR spectroscopy. Its implications for enabling cell culture PAT were discussed.  相似文献   
14.
The cover image, by José Antonio Díaz et al., is based on the Research Article Kinetic modelling of the glycerol oxidation in the liquid phase: comparison of Pt, Au and Ag AS active phases, DOI: 10.1002/jctb.5296 . Photo Credit: CNRS Photothèque / Cyril FRESILLON.

  相似文献   

15.
16.
In this research a new heterogeneous catalyst has been prepared for biodiesel production. The catalyst was prepared by sulfonating industrial sugar waste. Unlike homogeneous catalysts, which require further purification and separation from the biodiesel production reaction media, this inexpensive synthetic catalyst does not need to go through an additional separation process. This advantage consequently minimizes the total application costs. The catalyst was prepared by partially carbonizing sugar beet pulp at 400 °C. The carbonization product was then sulfonated with concentrated H2SO4 vapor in order to produce a solid catalyst. The prepared catalyst was used in the esterification reaction between palm fatty acid distillate (PFAD) and methanol. The effects of the temperature, methanol/PFAD ratio, reaction time and catalyst dosage on the efficiency of the production were individually investigated. The optimum biodiesel production occurred at 85 °C, a reaction time of 300 min, catalyst dosage of 3 g and methanol/PFAD ratio of 5:1 (mol/mol), lowering the acid value from 198 to 13.1 (mg KOH/g oil) or the equivalent, with a fatty acid methyl ester yield of around 92 %. The results suggest that the synthesized inexpensive catalyst is useful for biodiesel production from PFAD.  相似文献   
17.
Site-directed mutagenesis on human cytidine deaminase (CDA)was employed to mutate specifically two highly conserved phenylalanineresidues, F36 and F137, to tryptophan; at the same time, theunique tryptophan residue present in the sequence at position113 was mutated to phenylalanine. These double mutations wereperformed in order to have for each protein a single tryptophansignal for fluorescence studies relative to position 36 or 137.The mutant enzymes thus obtained, W113F, F36W/W113F and F137W/W113F,showed by circular dicroism and thermal stability an overallstructure not greatly affected by the mutations. The titrationof Trp residues by N-bromosuccinimide (NBS) suggested that residueW113 of the wild-type CDA and W36 of mutant F36W/W113F are buriedin the tertiary structure of the enzyme, whereas the residueW137 of mutant F137W/W113F is located near the surface of themolecule. Kinetic experiments and equilibrium experiments withFZEB showed that the residue W113 seems not to be part of theactive site of the enzyme whereas the Phe/Trp substitution inF36W/W113F and F137W/W113F mutant enzymes had a negative effecton substrate binding and catalysis, suggesting that F137 andF36 of the wild-type CDA are involved in a stabilizing interactionbetween ligand and enzyme.  相似文献   
18.
Differences between the acidic properties of silicoaluminic Pt-containing catalysts and those assessed on their parent supports have been reported in the literature and attributed to the presence of the metal nanoparticles and to their influence on the acid sites. It is shown here that for mesoporous materials containing various types of Al species, an alternative explanation can be proposed. 27Al NMR spectroscopy, FTIR of adsorbed CO and probe catalytic tests suggest the redistribution of aluminium atoms upon contact of the parent support with the aqueous solution containing the Pt precursor. Upon contact with water and thermal treatment, strong and mild Brønsted sites (Si–O(H)–Al) transform into strong Lewis sites (isolated tetracoordinated Al atoms). As a consequence, it may not be straightforward to deduce the acidic properties of metal-containing catalysts supported on Al-containing mesoporous materials from those of the bare support, because the surface species may differ significantly.  相似文献   
19.
Organic solvent nanofiltration (OSN) is gradually expanding from academic research to industrial implementation. The need for membranes with low and sharp molecular weight cutoffs that are able to operate under aggressive OSN conditions is increasing. However, the lack of comparable and uniform performance data frustrates the screening and membrane selection for processes. Here, a collaboration is presented between several academic and industrial partners analyzing the separation performance of 10 different membranes using three model process mixtures. Membrane materials range from classic polymeric and thin film composites (TFCs) to hybrid ceramic types. The model solutions were chosen to mimic cases relevant to today's industrial use: relatively low molar mass solutes (330–550 Da) in n-heptane, toluene, and anisole.  相似文献   
20.
This study shows that the corrosion behaviour of 12 wt% Cr steel in CO2 at 550 °C is determined in the first stage of oxidation by reaction with O2 impurities. Depending on the amount of theses impurities and the thermal ramp rate, selective oxidation of chromium could lead to the formation of a protective chromium-rich oxide. An oxidation model describing qualitatively the nature of the oxide layer formed in the initial period of oxidation is presented. From these observations, surface engineering processes for protecting 9–12 wt% chromium steels from fast corrosion rate have emerged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号