首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5834篇
  免费   320篇
  国内免费   6篇
电工技术   76篇
综合类   13篇
化学工业   1495篇
金属工艺   138篇
机械仪表   115篇
建筑科学   403篇
矿业工程   29篇
能源动力   147篇
轻工业   451篇
水利工程   50篇
石油天然气   8篇
无线电   450篇
一般工业技术   1237篇
冶金工业   253篇
原子能技术   37篇
自动化技术   1258篇
  2024年   11篇
  2023年   102篇
  2022年   140篇
  2021年   230篇
  2020年   150篇
  2019年   128篇
  2018年   190篇
  2017年   165篇
  2016年   248篇
  2015年   242篇
  2014年   301篇
  2013年   400篇
  2012年   380篇
  2011年   462篇
  2010年   356篇
  2009年   340篇
  2008年   341篇
  2007年   318篇
  2006年   240篇
  2005年   211篇
  2004年   159篇
  2003年   152篇
  2002年   126篇
  2001年   81篇
  2000年   78篇
  1999年   67篇
  1998年   76篇
  1997年   46篇
  1996年   51篇
  1995年   58篇
  1994年   34篇
  1993年   33篇
  1992年   29篇
  1991年   21篇
  1990年   20篇
  1989年   18篇
  1988年   15篇
  1987年   13篇
  1986年   8篇
  1985年   5篇
  1984年   23篇
  1983年   9篇
  1982年   9篇
  1981年   7篇
  1980年   7篇
  1979年   5篇
  1978年   6篇
  1976年   9篇
  1975年   6篇
  1974年   5篇
排序方式: 共有6160条查询结果,搜索用时 15 毫秒
61.
In this paper an approach to the performance analysis of signal-to-interference (SIR) based selection combining (SC) operating over the Rayleigh fading channels experiencing an arbitrary number of multiple, Rayleigh co-channel interferers is presented. We have presented a general analysis of multibranch SC where each branch experiences an arbitrary number of multiple equal power co-channel interferers. Useful closed form expressions are derived for the probability density function (PDF) and cumulative distribution function (CDF) at the output of the combiner. Also an outage analysis is performed in order to show the effects of the number of multiple interferers, diversity order and input SIR unbalance to the system performances.  相似文献   
62.
The lithium sulfur battery system has been studied since the late 1970s and has seen renewed interest in recent years. However, even after three decades of intensive research, prolonged cycling can only be achieved when a large excess of electrolyte and lithium is used. Here, for the first time, a balanced and stable lithium sulfur full cell is demonstrated with silicon–carbon as well as all‐carbon anodes. More than 1000 cycles, a specific capacity up to 1470 mAh g?1 sulfur (720 mAh g?1 cathode), and a high coulombic efficiency of over 99% even with a low amount of electrolyte are achieved. The alternative anodes do not suffer from electrolyte depletion, which is found to be the main cause of cell failure when using metallic lithium anodes.  相似文献   
63.
Controlled Suzuki–Miyaura coupling polymerization of 7′‐bromo‐9′,9′‐dioctyl‐fluoren‐2′‐yl‐4,4,5,5‐tetramethyl‐[1,3,2]dioxaborolane initiated by bromo(4‐tert‐butoxycarbonylamino‐phenyl)(tri‐tert‐butylphosphine)palladium ( 1 ) or bromo(4‐diethoxyphosphoryl‐phenyl)(tri‐tert‐butylphosphine)palladium ( 2 ) yields functionalized polyfluorenes (Mn = 4 × 103 g mol?1, Mw/Mn < 1.2) with a single amine or phosphonic acid, respectively, end‐group. High temperature synthesis of cadmium selenide quantum dots with these functionalized polyfluorenes as stabilizing ligands yields hybrid particles consisting of good quality (e.g. emission full width at half maximum of 30 nm; size distribution σ < 10%) inorganic nanocrystals with polyfluorene attached to the surface, as corroborated by transmission electron microscopy analysis and analytical ultracentrifugation. Sedimentation studies on particle dispersions show that a substantial portion (ca. half) of the phosphonic acid terminated polyfluorene ligands is bound to the inorganic nanocrystals, versus ca. 5% for the amino‐functionalized polyfluorene ligands. Single particle micro‐photoluminescence spectroscopy shows an efficient and complete energy transfer from the polyfluorene layer to the inorganic quantum dot.  相似文献   
64.
In this work, crystallization kinetics and aggregate growth of poly(3‐ethylhexylthiophene) (P3EHT) thin films are studied as a function of film thickness. X‐ray diffraction and optical absorption show that individual aggregates and crystallites grow anisotropically and mostly along only two packing directions: the alkyl stacking and the polymer chain backbone direction. Further, it is also determined that crystallization kinetics is limited by the reorganization of polymer chains and depends strongly on the film thickness and average molecular weight. Time‐dependent, field‐effect hole mobilities in thin films reveal a percolation threshold for both low and high molecular weight P3EHT. Structural analysis reveals that charge percolation requires bridged aggregates separated by a distance of ≈2–3 nm, which is on the order of the polymer persistence length. These results thus highlight the importance of tie molecules and inter‐aggregate distance in supporting charge percolation in semiconducting polymer thin films. The study as a whole also demonstrates that P3EHT is an ideal model system for polythiophenes and should prove to be useful for future investigations into crystallization kinetics.  相似文献   
65.
We report a novel hybrid charge sensor realized by the deposition of phospholipid monolayers on highly doped n‐GaN electrodes. To detect the binding of recombinant proteins with histidine‐tags, lipid vesicles containing chelator lipids were deposited on GaN electrodes pre‐coated with octadecyltrimethoxysilane monolayers. Owing to its optical transparency, GaN allows the confirmation of the fluidity of supported membranes by fluorescence recovery after photo‐bleaching (FRAP). The electrolyte‐(organic) insulator‐semiconductor (EIS) setup enables one to transduce variations in the surface charge density ΔQ into a change in the interface capacitance ΔC p and, thus, the flat‐band potential ΔU FB. The obtained results demonstrate that the membrane‐based charge sensor can reach a high sensitivity to detect reversible changes in the surface charge density on the membranes by the formation of chelator complexes, docking of eGFP with histidine tags, and cancellation by EDTA. The achievable resolution of ΔQ ≥ 0.1 μC/cm2 is better than that obtained for membrane‐functionalized p‐GaAs, 0.9 μC/cm2, and for ITO coated with a polymer supported lipid monolayer, 2.2 μC/cm2. Moreover, we examined the potential application of optically active InGaN/GaN quantum dot structures, for the detection of changes in the surface potential from the photoluminescence signals measured at room temperature.  相似文献   
66.
Using full 3D TCAD, an evaluation of process parameter space of bulk FinFET is presented from the point of view of DRAM, SRAM and I/O applications. Process and device simulations are performed with varying uniform fin doping, anti-punch implant dose and energy, fin width, fin height and gate oxide thickness. Bulk FinFET architecture with anti-punch implant is introduced beneath the channel region to reduce the punch-through and junction leakage. For 30 nm bulk FinFET, anti-punch implant with low energy of 15 to 25 keV and dose of 5.0 × 1013 to 1.0 × 1014 cm−2 is beneficial to effectively suppress the punch-through leakage with reduced GIDL and short channel effects. Our simulations show that bulk FinFETs are approximately independent of back bias effect. With identical fin geometry, bulk FinFETs with anti-punch implant show same ION-IOFF behavior and approximately equal short channel effects like SOI FinFETs.  相似文献   
67.
X-ray reflectivity combined with grazing incidence diffraction is a valuable tool for investigating organic multilayer structures that can be used in devices. We focus on a bilayer stack consisting of two materials (poly-(3-hexylthiophene)) (P3HT) and poly-(4-styrenesulfonic acid) (PSSA) spin cast from orthogonal solvents (water in the case of PSSA and chloroform or toluene for P3HT). X-ray reflectivity is used to determine the thickness of all layers as well as the roughness of the organic–organic hetero-interface and the P3HT surface. The surface roughness is found to be consistent with the results of atomic force microscopy measurements. For the roughness of P3HT/PSSA interface, we observe a strong dependence on the solvent used for P3HT deposition. The solvent also strongly impacts the texturing of the P3HT crystallites as revealed by grazing incidence diffraction. When applying the various PSSA/P3HT multilayers in organic thin-film transistors, we find an excellent correlation between the determined interface morphology, structure and the device performance.  相似文献   
68.
There is an increasing demand to utilize the frequency spectrum of mobile communication systems most efficiently. This means in particular to GSM networks that the frequency reuse shall be planned as low as possible. In this case the system may become limited by interference rather than coverage. One promising technology for GSM mobiles in interference-limited systems is single antenna interference cancellation (SAIC). This receiver technology allows both for increasing the network capacity and for reducing the base station transmit power. The aim of this paper is to assess the emission reduction as well as the system capacity capabilities when SAIC technology is applied in downlink receivers.  相似文献   
69.
Bio/artificial hybrid nanosystems based on biological matter and synthetic nanoparticles (NPs) remain a holy grail of materials science. Herein, inspired by the well-defined metal–organic framework (MOF) with diverse chemical diversities, the concept of “armored red blood cells” (armored RBCs) is introduced, which are native RBCs assembled within and protected by a functional exoskeleton of interlinked MOF NPs. Exoskeletons are generated within seconds through MOF NP interlocking based on metal-phenolic coordination and RBC membrane/NP complexation via hydrogen-bonding interactions at the cellular interface. Armored RBC formation is shown to be generalizable to many classes of MOF NPs or any NPs that can be coated by MOF. Moreover, it is found that armored RBCs preserve the original properties of RBCs (such as oxygen carrier capability and good ex ovo/in vivo circulation property) and show enhanced resistance against external stressors (like osmotic pressure, detergent, toxic NPs, and freezing conditions). By modifying the physicochemical properties of MOF NPs, armored RBCs provide the capability for blood nitric oxide sensing or multimodal imaging. The synthesis of armored RBCs is straightforward, reliable, and reversible and hence, represent a new class of hybrid biomaterials with a broad range of functionalities.  相似文献   
70.
Inspired by nature, the synthesis of biohybrid nanocomposites containing inorganic nanoparticles (NPs) and biopolymers such as DNA and peptides as templates offers great potential for a wide range of applications. Using selective recognition schemes of 3D protein spaces for the assembly of magnetic nanocrystals is a challenge with great promise in the field of biomedicine and magnetic data storage. Here we apply the toroidal protein Hcp1 as an interparticle connector for the directed molecular assembly and ferrimagnetic coupling of biohybrid cobalt ferrite NP wires. The resulting biohybrid NP composites show bundles of nanofibers ranging from nano‐ to the microscale in length verified by TEM, EDX analysis and focused ion beam cut. Their magnetic characterization reveals an increase of the coercive field (+12%) reaching values of high‐end Nd2Fe14B bulk magnets, enhanced saturation (+28%) and remanence magnetization (+38%) at 2 K compared to NPs lacking the protein connector. Thus, the combination of the nanoscale alignment of magnetic NPs with the molecular precision of the protein connectors leads to constructive addition of the magnetization reversal energy. This approach can be used to control magnetic properties for the design of materials with enhanced coercivity applicable for magnetic data storage, hyperthermia and theranostics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号