首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   11篇
电工技术   8篇
综合类   1篇
化学工业   90篇
金属工艺   7篇
机械仪表   14篇
建筑科学   21篇
能源动力   14篇
轻工业   19篇
水利工程   2篇
无线电   73篇
一般工业技术   36篇
冶金工业   107篇
原子能技术   9篇
自动化技术   13篇
  2022年   4篇
  2021年   4篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   9篇
  2012年   6篇
  2011年   10篇
  2010年   10篇
  2009年   22篇
  2008年   22篇
  2007年   13篇
  2006年   15篇
  2005年   18篇
  2004年   17篇
  2003年   15篇
  2002年   10篇
  2001年   7篇
  2000年   9篇
  1999年   11篇
  1998年   41篇
  1997年   35篇
  1996年   17篇
  1995年   9篇
  1994年   5篇
  1993年   7篇
  1992年   4篇
  1991年   11篇
  1990年   5篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有414条查询结果,搜索用时 15 毫秒
51.
Estimation of a debris flow impact force against protection structures made of structural concrete. Alpine regions are exposed to several gravitational hazard processes. Such processes are debris flows, landslides or avalanches. Human settlements are amongst other things protected by structures adjusted to a certain process. The preparation of methods of calculation for the estimation of a debris flow impact force against such protection structures made of structural concrete is the major content of this paper. The paper is strongly related to the Austrian code series ONR2480X currently under development.  相似文献   
52.
53.
Chiral molecules have recently received renewed interest as highly efficient sources of spin-selective charge emission known as chiral-induced spin selectivity (CISS), which potentially offers a fascinating utilization of organic chiral materials in novel solid-state spintronic devices. However, a practical use of CISS remains far from completion, and rather fundamental obstacles such as (i) external controllability of spin, (ii) function durability, and (iii) improvement of spin-polarization efficiency have not been surmounted to date. In this study, these issues are addressed by developing a self-assembled monolayer (SAM) of overcrowded alkene (OCA)-based molecular motor. With this system, it is successfully demonstrated that the direction of spin polarization can be externally and repeatedly manipulated in an extremely stable manner by switching the molecular chirality, which is achieved by a formation of the covalent bonds between the molecules and electrode. In addition, it is found that a higher stereo-ordering architecture of the SAM of OCAs tailored by mixing them with simple alkanethiols considerably enhances the efficiency of spin polarization per a single OCA molecule. All these findings provide the creditable feasibility study for strongly boosting development of CISS-based spintronic devices that can simultaneously fulfill the controllability, durability, and high spin-polarization efficiency.  相似文献   
54.
Matrix-type nickel oxide (NiO)/samarium-doped ceria (SDC) composite particles, in which NiO and SDC nano-particles were homogeneously dispersed, were synthesized by spray pyrolysis (SP) for an anode precursor of intermediate-temperature solid oxide fuel cells (IT-SOFCs). SP of an aqueous solution containing Ni, Ce, and Sm salts resulted in capsule-type composite particles that had NiO enveloped with SDC. The capsule-type composite particles actually prevent Ni aggregation between particles, but they cannot have a large contact area between nickel (Ni) and SDC. A matrix-type composite particle is expected to have a large contact area because the matrix-type composite is comprised of nanometer-sized Ni and SDC particles. An adequate addition of ethylene glycol successfully resulted in matrix-type NiO/SDC composite particles. The matrix-type composite particles also showed higher anode performance than the capsule-type composite particles in these experiments and they were effective as precursors of high-performance IT-SOFC anodes.  相似文献   
55.
Of thermosetting polymers, polyphenylene oxide (PPO) is considered as one of the promising alternative polymeric precursors for carbon membrane preparation. In this study, the PPO derived carbon membranes were prepared by carbonization and followed by air-oxidation as post-treatment method to modify the membrane pore structures. The characterization of the pore properties showed that air-oxidation enlarged the pore structure for the postoxidized carbon materials. The permeation results for the post-oxidized carbon membranes showed that the extent of the permeation modification was strongly dependent on the oxidation temperature. In the binary mixture gas systems, the permeation performance of the adsorbing gas species increased due to the surface diffusion mechanism. It is considered in the oxidation effect on the permeation modification that the post-oxidation of the carbon membranes increased gas permeation and separation properties.  相似文献   
56.
Fairly uniform copolymer particles of methyl acrylate (MA), butyl acrylate (BA), or butyl methacrylate (BMA) were synthesized via Shirasu porous glass (SPG) membrane and followed by suspension polymerization. After a single‐step SPG emulsification, the emulsion composed mainly of the monomers. Hydrophobic additives of dioctyl phthalate (DOP), polystyrene molecules, and an oil‐soluble initiator, suspended in an aqueous phase containing poly(vinyl alcohol) (PVA) stabilizer and sodium nitrite inhibitor (NaNO2), were subsequently subjected to suspension polymerization. Two‐phase copolymers with a soft phase and a hard phase were obtained. The composite particles of poly(St‐co‐MA)/PSt were prepared by varying the St/PSt ratios or the DOP amount. The addition of PSt induced a high viscosity at the dispersion phase. The molecular weight slightly increased with increasing St/PSt concentration. The multiple‐phase separation of the St‐rich phase and PMA domains, observed by transmission electron microscopy, was caused by composition drift because the MA reactivity ratio is greater than that of St. The addition of DOP revealed the greater compatibility between the hard‐St and soft‐MA moieties than that without DOP. The phase morphologies of poly(St‐co‐MA), poly(St‐co‐BMA), and their composites with PSt were revealed under the influence of DOP. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1195–1206, 2006  相似文献   
57.
Hydrolyzed collagen‐grafted‐poly[(acrylic acid)‐co‐(methacrylic acid)] hydrogels were synthesized by solution polymerization and confirmed by infrared spectroscopy. From sequential univariate analysis, the optimal molar ratio of acrylic acid: methacrylic acid was 92:8 in the presence of N,N′‐methylenebisacrylamide, ammonium persulfate, and N,N,N′,N′‐tetramethylethylenediamine at 0.12, 0.015, and 0.2% mol of the monomers, respectively. The water absorbency of this hydrogel was both pH‐ and temperature‐dependent, but was higher in nonbuffered water than in boric acid/citric acid/phosphate buffer under the same conditions. The optimal hydrogel could swiftly swell and deswell in neutral and acid solutions, respectively. Its potential application in drug delivery was examined using insulin and methylene blue as model payload drugs. Loading in a 50% (v v?1) ethanol solution gave a higher insulin loading level than in the buffer water. Insulin and methylene blue were both released at pH 6.8 but not at pH 1.2, but followed first order kinetics and the Higuchi equation, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45654.  相似文献   
58.
Thermo- and pH-responsive N-isopropylacrylamide (NIPAM) nanogels can be obtained by copolymerization of acrylic acid (AA) comonomer through differential microemulsion polymerization. The effects of comonomer, cross-linker, surfactant contents, and water/oil ratio were preliminarily investigated by a 24 full factorial design in order to eliminate the insignificant parameters from the polymerization analysis. The smallest poly(NIPAM-co-AA) nanogel particles were 40 ± 1 nm in diameter with 6 wt% of solid content and 98% conversion without coagulation. The comonomer amounts controlled the morphologies and LCST of the poly(NIPAM-co-AA) nanogels. The hairy microgels of poly(NIPAM-co-AA) with a 10:90 mol ratio of AA/ NIPAM had a lower critical solution temperature (LCST) of 6 °C. With an increase in the AA amount to a 17 mol ratio, the LCST increased to 27 °C, resulting in core-shell morphology. The morphology of resultant nanogels was characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, and differential scanning calorimetry. Nuclear magnetic resonance spectroscopy was used to calculate the mole ratio of NIPAM and AA in resultant nanogels after dialysis. Both nanogel mole ratio and morphology effectively retained the cationic anti-cancer drug of methylene blue for several hours, an important basic requirement for a drug delivery system. Compared to core-shell microgels, a higher methylene blue release was obtained from the hairy microgels in simulated intestinal fluid.  相似文献   
59.
The authors’ group has been conducting full-scale measurements of wind velocities with Doppler sodars. It is very important to accurately assess the profiles of mean wind speeds and turbulence intensities in relation to terrain roughness. In this study, the profiles were evaluated for all data measured over a long period at a seashore and two inland sites. It is confirmed that for strong winds the profiles can be approximated by a single power law at altitudes between 50 and 340 m. The power law exponents of the mean wind speed profiles are approximately 0.1 for wind from the sea and 0.2-0.3 for wind blown over land. Those of the turbulence intensity profiles are approximately 0 and −0.2 to 0.4, respectively.  相似文献   
60.
A tubular-shaped polyaniline less than 5 microm in length and 170 nm in outer diameter was synthesized by a self-assembly process using D-camphorsulfonic acid as a dopant. A tubular-shaped nanocarbon was prepared from the tubular-shaped polyaniline by means of pyrolysis at 1000 degrees C in argon gas. The structural and electrical properties of the resultant tubular-shaped nanocarbons were investigated using Raman scattering spectrum, X-ray diffraction measurements, scanning and transmission electron microscopes, and a low resistivity meter. The tubular-shaped nanocarbons are very short in length and are an amorphous state. The short length and amorphous tubular-shaped nanocarbon were crystallized to some extent by heat-treatment at 2600 degrees C. The tubular-shaped nanocarbons mentioned in this work are appropriate for mass production, compared to the well-known multi-walled carbon nanotubes. The electrical conductively of the tubular-shaped polyaniline was remarkably improved by the carbonization and was enhanced by the heat-treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号