首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   440篇
  免费   33篇
电工技术   2篇
化学工业   106篇
金属工艺   10篇
机械仪表   17篇
建筑科学   28篇
能源动力   34篇
轻工业   53篇
水利工程   7篇
石油天然气   3篇
无线电   32篇
一般工业技术   77篇
冶金工业   39篇
原子能技术   1篇
自动化技术   64篇
  2023年   22篇
  2022年   28篇
  2021年   49篇
  2020年   23篇
  2019年   26篇
  2018年   23篇
  2017年   27篇
  2016年   22篇
  2015年   15篇
  2014年   20篇
  2013年   31篇
  2012年   11篇
  2011年   21篇
  2010年   13篇
  2009年   11篇
  2008年   13篇
  2007年   4篇
  2006年   8篇
  2005年   4篇
  2004年   5篇
  2003年   1篇
  2002年   8篇
  2001年   2篇
  2000年   10篇
  1999年   5篇
  1998年   8篇
  1997年   5篇
  1996年   11篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   7篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有473条查询结果,搜索用时 15 毫秒
21.
22.
A polymer gel is one of the common remediate methods to either reduce or totally block excessive water production in oilfields. Some systems demonstrated an excellent performance in treating the problem like polyacrylamide tert‐butyl acrylate (PAtBA)/polyethylenimine (PEI). In this study, polyacrylamide (PAM) was introduced as a cheap alternative to PAtBA that can tolerate high salinity reservoirs. The thermal stability of the PAM/PEI polymeric gel in saline water was examined at 150°C (302F). Samples prepared in sea water showed better stability compared with distilled and field water. Dynamic rheology and core‐flooding experiments were used to evaluate the PAM / PEI gel system at high temperatures. NaCl and NH4Cl were evaluated as a possible retarders for delaying the gelation time in order to achieve a successful placement. NH4Cl was found to be more effective retarder. Core‐flooding tests were conducted in sandstone and carbonate cores. The subject polymer gel was injected at rates typical of those in field applications. The injectivity of PAM/PEI was tested in Berea sandstone cores with initial permeability of ~45 mD. The post‐treatment of the system showed a permeability reduction of ~94% for a period of two weeks. The injectivity in low permeability carbonate cores required more retardation compared with the injectivity in sandstone cores. The gel reduced the permeability to brine in Indiana limestone core by 99.8% for more than 5 months. Rheology of cured gel samples indicated that the gel strength needs about one day of curing in the core for the strength to stabilize. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41869.  相似文献   
23.
The G0 and G1 polyurethane dendrimers terminated with 3–12 atom transfer radical polymerization (ATRP) initiators were prepared using single and dual functional ATRP reagents and their structures were confirmed using FT-IR, 1H–NMR, HR-MS and SEC-MALLS techniques. 4-Vinylpyridine was polymerized using the G1 dendritic initiators to obtain six- and twelve-arm star poly(4-vinylpyridine)s (STAR-P1 and STAR-P2). The absolute molecular weight and PDI of star polymers were in the order of 105 and 1.23–1.24 respectively. Hydrolysis leading to degradation of inner polyurethane core of the star polymers yielded more narrow dispersed poly(4-vinylpyridine) chains and the SEC-MALLS data of these chains confirm the accurate control on number of arms. Both of the polymers were doped with KI/I2 along with N3-dye to work as efficient polymer electrolytes for dye sensitized solar cell (DSSC). The increment in the conductivity of doped STAR-P1 was very significant and reached 2.415 mS/m from 0.0066 mS/m of dopant salt. The current-voltage characteristics of these doped polymer electrolytes measured under simulated sun light with AM 1.5 at 40 mW/cm2 yielded energy conversion efficiency (η) of 5.13% and 1.90% for STAR-P1 and STAR-P2 respectively and these values also significantly high compared to 1.09% corresponds to current-voltage curve of the device fabricated without the polymers.
Graphical abstract Star poly(4-vinylpyridine)s were prepared using novel dendritic ATRP initiators and used as electrolytes for dye sensitized solar cell (DSSC); one of the cells showed 5.13% energy conversion efficiency.
  相似文献   
24.
The complexity of well and reservoir conditions demands frequent redesigning of water plugging polymer gels during enhanced oil recovery (EOR). In the present study, we developed coal fly ash (CFA) based gels from polyacrylamide (PAM) polymer and polyethyleneimine (PEI) crosslinker for water control in mature oil fields. The CFA acts as an inorganic additive to fine-tune gelation performance and rheological properties of PAM/PEI gel system. Hence, effects of various CFA (0.5 to 2 wt%), PAM (2 to 8.47 wt%) and PEI (0.3 to 1.04 wt%) concentrations on gelation kinetics and dynamic rheology of pure PAM/PEI gel and PAM/PEI-CFA composite gels were studied at a representative reservoir temperature of 90 oC. Experimental results reveal that gelation time of pure PAM/PEI gel increases with increasing CFA addition. Further observation demonstrates that increasing PAM and PEI concentrations decreases the gelation times of PAM/PEI-CFA composite gels. Gelation time was found to be within 3-120 hours. Understanding the property of reaction order enables better prediction of gelation time. Dynamic rheological data show that viscoelastic moduli (G′ and G″) of various PAM/PEI-CFA composite gels improved better as compared to the pure PAM/PEI gel across the strain-sweep and frequency-sweep tests. SEM analysis of selected samples at 72 hours and 720 hours of gelation activity consolidated gelation kinetics and dynamic rheological results. These polymer gels are excellent candidates for sealing water thief zones in oil and gas reservoirs.  相似文献   
25.
26.
Binary doped polypyrrole (PPy) encapsulated Titania (TiO2) nanoparticles were prepared by oxidative polymerization using FeCl3 as oxidant in presence of camphorsulfonic acid (CSA) as surfactant. Both FeCl3 (oxidant) and camphorsulfonic acid (surfactant) also act as dopant and hence thus prepared polypyrrole/Titania (TiO2@PPy) is termed as binary doped nanocomposite i.e. FeCl3 dopes polypyrrole by oxidation mechanism while camphorsulfonic acid dopes polypyrrole by protonic doping mechanism. The TiO2@PPy coreshell nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), thermogravimetry, differential scanning calorimetry (DSC), field emission‐scanning electron microscopy (FE‐SEM), and inductance‐capacitance‐resistance (LCR) measurements. The results indicated that the structural and electrical properties of the TiO2@PPy coreshell nanocomposites were significantly influenced by the extent of TiO2 nanoparticles loading of polypyrrole. The direct current (DC) electrical conductivity of the as‐prepared TiO2@PPy coreshell nanocomposites was higher than that of PPy. As‐prepared TiO2@PPy coreshell nanocomposites were also studied for their dielectric losses for alternating current (AC) which is useful characteristic for their application in the fabrication of charge storing devices. TiO2@PPy coreshell nanocomposites showed synergistic effect of combining components in improving their alcohol sensing properties. This improvement may be attributed to the adsorption on and desorption from alcohols TiO2@PPy interface of the nanocomposites and alcohol vapors causing decrease in depletion region. The TiO2@PPy coreshell nanocomposites were observed to show better reproducibility of electrical conductivity and fast self‐recovery during the alcohol vapor sensing process. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43411.  相似文献   
27.
In this study, we report first time the electrical properties and photocatalytic activity of HCl doped polyaniline (Pani) and Pani/boron nitride (Pani/BN) nanocomposite prepared by in situ polymerization of aniline using potassium persulfate (K2S2O8) in the presence of hexagonal boron nitride (h‐BN). The prepared Pani and Pani/BN nanocomposite were characterized by Fourier transform infrared, X‐ray diffraction, Thermogravimetric analysis, Scanning electron microscope, and Transmission electron microscope. The stability of the Pani/BN nanocomposite in comparison of Pani in terms of the DC electrical conductivity retention was investigated under isothermal and cyclic aging conditions. The Pani/BN nanocomposite in terms of DC electrical conductivity was observed to be comparatively more thermally stable than Pani. The degradation of Methylene blue (MB) and Rhodamine B (RhB) under UV‐light irradiation were 50 and 56.4%, respectively, over Pani and 65.7 and 71.6%, respectively, over Pani/BN. The results indicated that the extent of degradation of MB and RhB was greater over nanocomposite material than Pani, which may result due to high electron–hole pairs charge separation under UV light. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43989.  相似文献   
28.
Cure reaction between a series of N-methylaniline-blocked polyisocyanates, based on 4,4′-methylenebis(phenyl isocyanate), poly(tetrahydrofuran) and several substituted N-methylanilines, and n-decanol has been studied. The solid-state isothermal cure reaction was carried out using hot-stage FTIR spectroscopy, in the temperature range of 125–145°C. The urea carbonyl absorption band of blocked polyisocyanate moiety was used to monitor the conversion of blocked polyisocyanate into polyurethane. Kinetic and thermodynamic parameters were calculated using normalized conversion curves. The overall order of cure reaction, for each of the blocked polyisocyanates was found to be first order. Based on the results of kinetics and reaction conditions used in this study, the elimination-addition (SN1) mechanism was suggested for the cure reaction between N-methylaniline-blocked polyisocyanates and n-decanol. The effect of substituents present in the blocking agents on the cure reaction of N-methylaniline-blocked polyisocyanates was investigated and found that the cure reaction of N-methylaniline-blocked polyisocyanates was retarded by electron-donating substituents and facilitated by electron withdrawing substituents. The observed high negative entropy of activation value supports the formation of a four-centered, intramolecularly hydrogen-bonded ring structure during transition state of the cure reaction. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
29.

This paper studies the thermal behavior of a wireless powered micropump operated using thermo-pneumatic actuation. Numerical analysis was performed to investigate the temporal conduction of the planar inductor-capacitor (LC) wireless heater and the heating chamber. The result shows that the temperature at the heating chamber reaches steady state temperature of 46.7°C within 40 seconds. The finding was further verified with experimental works through the fabrication of the planar LC heater (RF sensitive actuator) and micropump device using MEMS fabrication technique. The fabricated device delivers a minimum volume of 0.096 μL at the temperature of 29°C after being thermally activated for 10 s. The volume dispensed from the micropump device can precisely controlled by an increase of the electrical heating power within the cut-off input power of 0.22 W. Beyond the power, the heat transfer to the heating chamber exhibits non-linear behavior. In addition, wireless operation of the fabricated device shows successful release of color dye when the micropump is immersed in DI-water containing dish and excited by tuning the RF power.

  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号