首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   1篇
电工技术   8篇
化学工业   47篇
金属工艺   27篇
机械仪表   23篇
建筑科学   2篇
能源动力   20篇
轻工业   9篇
水利工程   1篇
无线电   17篇
一般工业技术   51篇
冶金工业   45篇
原子能技术   8篇
自动化技术   48篇
  2023年   2篇
  2022年   7篇
  2021年   10篇
  2020年   7篇
  2019年   4篇
  2018年   11篇
  2017年   9篇
  2016年   9篇
  2015年   3篇
  2014年   12篇
  2013年   14篇
  2012年   12篇
  2011年   12篇
  2010年   19篇
  2009年   11篇
  2008年   27篇
  2007年   8篇
  2006年   13篇
  2005年   13篇
  2004年   6篇
  2003年   3篇
  2002年   6篇
  2001年   9篇
  2000年   6篇
  1999年   10篇
  1998年   4篇
  1997年   9篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   6篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1960年   1篇
排序方式: 共有306条查询结果,搜索用时 15 毫秒
41.
A novel CMOS integrated Micro-Electro-Mechanical capacitive pressure sensor in SiGe MEMS (Silicon Germanium Micro-Electro-Mechanical System) process is designed and analyzed. Excellent mechanical stress–strain behavior of Polycrystalline Silicon Germanium (Poly-SiGe) is utilized effectively in this MEMS design to characterize the structure of the pressure sensor diaphragm element. The edge clamped elliptic structured diaphragm uses semi-major axis clamp springs to yield high sensitivity, wide dynamic range and good linearity. Integrated on-chip signal conditioning circuit in 0.18 μm TSMC CMOS process (forming the host substrate base for the SiGe MEMS) is also implemented to achieve a high overall gain of 102 dB for the MEMS sensor. A high sensitivity of 0.17 mV/hPa (@1.4 V supply), with a non linearity of around 1 % is achieved for the full scale range of applied pressure load. The diaphragm with a wide dynamic range of 100–1,000 hPa stacked on top of the CMOS circuitry, effectively reduces the combined sensor and conditioning implementation area of the intelligent sensor chip.  相似文献   
42.
In this paper, a combined scheme of edge-based smoothed finite element method (ES-FEM) and node-based smoothed finite element method (NS-FEM) for triangular Reissner–Mindlin flat shells is developed to improve the accuracy of numerical results. The present method, named edge/node-based S-FEM (ENS-FEM), uses a gradient smoothing technique over smoothing domains based on a combination of ES-FEM and NS-FEM. A discrete shear gap technique is incorporated into ENS-FEM to avoid shear-locking phenomenon in Reissner–Mindlin flat shell elements. For all practical purpose, we propose an average combination (aENS-FEM) of ES-FEM and NS-FEM for shell structural problems. We compare numerical results obtained using aENS-FEM with other existing methods in the literature to show the effectiveness of the present method.  相似文献   
43.
Cold gas dynamic spraying (CGDS), a relatively new thermal spraying technique has drawn a lot of attention due to its inherent capability to deposit a wide range of materials at relatively low-operating temperatures. A De Laval nozzle, used to accelerate the powder particles, is the key component of the coating equipment. Knowledge concerning the nozzle design and effect of process parameters is essential to understand the coating process and to enable selection of appropriate parameters for enhanced coating properties. The present work employs a one-dimensional isentropic gas flow model in conjunction with a particle acceleration model to calculate particle velocities. A laser illumination-based optical diagnostic system is used for validation studies to determine the particle velocity at the nozzle exit for a wide range of process and feedstock parameters such as stagnation temperature, stagnation pressure, powder feed rate, particle size and density. The relative influence of process and feedstock parameters on particle velocity is presented in this work.  相似文献   
44.
A surface processing method that combines electrostatic deposition of microparticles and dry etching is utilized to modify the surface topography of silicon surfaces to reduce adhesion and friction force. Microscale adhesion and friction tests were conducted on flat (smooth) and processed silicon surfaces with a low elastic modulus thermoplastic rubber (Santoprene) probe that allowed a large enough contact area to observe the feature size effect. Both adhesion and friction force of the processed surfaces were reduced comparing to that of the flat surfaces.  相似文献   
45.
This work presents a simple model for predicting the thermal conductivity of carbon nanotube (CNT) nanofluids. Effects due to the high thermal conductivity of CNTs and the percolation of heat through it are considered to be the most important reasons for their anomalously high thermal conductivity enhancement. A new approach is taken for the modeling, the novelty of which lies in the prediction of the thermal behaviour of oil based as well as water based CNT nanofluids, which are quite different from each other in thermal characteristics. The model is found to correctly predict the trends observed in experimental data for different combinations of CNT nanofluids with varying concentrations.  相似文献   
46.
The effect of external pulsation on a pair of stationary Lamb–Oseen vortices of equal strength has been analyzed to investigate kinematic behavior of a fluid particle. The assumption of vortices being treated stationary or fixed vortex filaments is valid in a reference frame attached to the vortex system with axes along and perpendicular to the line of their centers. Also, it is assumed that change in core shape and size is much small, with least possibility of core merger. In such situations, periodic particle paths are observed and superposition of pulsation becomes beneficial. In the present work, motion of a representative fluid particle is modeled as a non-linear dynamical system by varying both amplitude and frequency of external pulsation. Effect of external pulsation has been brought out with the help of quantification of deviation from periodic paths by using the concept of total average deviation. Results are presented in terms of particle paths, velocity phase plots, velocity signals and their spectra for varying amplitude and frequency of external pulsation.  相似文献   
47.
The primary objective of this study is to evaluate the influence of coating technique on the high cycle fatigue of an Al6061 alloy. Towards this purpose, Al6061 alloy fatigue samples have been coated with Al2O3 utilising the detonation spray, air plasma spray, micro arc oxidation and hard anodizing techniques. The high cycle fatigue life of these coated samples has been evaluated over a range of alternating stress values and compared with the fatigue life of the uncoated Al6061 alloy. It is observed that the detonation spray coated sample exhibits a higher fatigue life than the uncoated sample. In contrast, the samples coated using the other techniques exhibit poorer fatigue life compared to the uncoated sample especially at lower alternating stress values. These results have been explained on the basis of the nature of the coating-substrate interface which is strongly determined by the coating technique used to deposit the Al2O3 coatings.  相似文献   
48.
    
An in situ study is reported on the structural evolution in nanocluster films under He+ ion irradiation using an advanced helium ion microscope. The films consist of loosely interconnected nanoclusters of magnetite or iron‐magnetite (Fe‐Fe3O4) core‐shells. The nanostructure is observed to undergo dramatic changes under ion‐beam irradiation, featuring grain growth, phase transition, particle aggregation, and formation of nanowire‐like network and nanopores. Studies based on ion irradiation, thermal annealing and electron irradiation have indicated that the major structural evolution is activated by elastic nuclear collisions, while both electronic and thermal processes can play a significant role once the evolution starts. The electrical resistance of the Fe‐Fe3O4 films measured in situ exhibits a super‐exponential decay with dose. The behavior suggests that the nanocluster films possess an intrinsic merit for development of an advanced online monitor for fast neutron radiation with both high detection sensitivity and long‐term applicability, which can enhance safety measures in many nuclear operations.  相似文献   
49.
    
A method is presented for dispersing ropes or bundles of single‐walled carbon nanotubes (RCNTs) in a polycarbonate (PC) matrix. Films of PC/RCNT composites are produced, with thicknesses ranging from 10 to 60 μm, and containing small concentrations (0.06–0.25 wt.‐%) of RCNT. Our process is based on a unique method of hot casting, annealing, and drying from dichlorobenzene solution. A wet annealing prior to complete drying yields a uniform and transparent film. Despite the low RCNT loading, scanning electron microscopy (SEM) analysis of the films after fracture reveals that the RCNTs form an entangled network throughout the film, which is a key requirement for enhanced properties. An increase of up to 30 % in the Young's modulus, as compared to PC, results with this method of composite fabrication.  相似文献   
50.
P.R. Sundararajan 《Polymer》2002,43(5):1691-1693
The crystalline morphology of poly(dimethylsiloxane) was studied using a scanning electron microscope equipped with a cold stage. Samples of two different molecular weights were used. In both cases, spherulitic morphology is seen, from −70 °C, with spherulites of about 100 μ in size. Small single crystals of about a micron in size are also seen, and these are attributed to the presence of cyclics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号