首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7000篇
  免费   693篇
  国内免费   18篇
电工技术   85篇
综合类   11篇
化学工业   1970篇
金属工艺   268篇
机械仪表   401篇
建筑科学   110篇
矿业工程   2篇
能源动力   379篇
轻工业   494篇
水利工程   9篇
石油天然气   6篇
武器工业   1篇
无线电   1277篇
一般工业技术   1592篇
冶金工业   284篇
原子能技术   49篇
自动化技术   773篇
  2024年   3篇
  2023年   72篇
  2022年   81篇
  2021年   199篇
  2020年   157篇
  2019年   200篇
  2018年   255篇
  2017年   244篇
  2016年   286篇
  2015年   251篇
  2014年   360篇
  2013年   458篇
  2012年   543篇
  2011年   598篇
  2010年   486篇
  2009年   485篇
  2008年   414篇
  2007年   311篇
  2006年   283篇
  2005年   233篇
  2004年   219篇
  2003年   240篇
  2002年   201篇
  2001年   138篇
  2000年   147篇
  1999年   138篇
  1998年   146篇
  1997年   90篇
  1996年   76篇
  1995年   56篇
  1994年   45篇
  1993年   32篇
  1992年   47篇
  1991年   28篇
  1990年   30篇
  1989年   32篇
  1988年   13篇
  1987年   18篇
  1986年   14篇
  1985年   8篇
  1984年   13篇
  1983年   14篇
  1982年   4篇
  1981年   9篇
  1980年   4篇
  1978年   4篇
  1977年   8篇
  1976年   11篇
  1975年   3篇
  1970年   1篇
排序方式: 共有7711条查询结果,搜索用时 15 毫秒
151.
Summary A poly(2,6-dimethyl-1,4-phenylene oxide) (PPO, 1) macroinitiator having carbonylcaprolactam groups was prepared through metalation of methyl group of PPO and subsequent modification to introduce carboxyl group, acid chloride group, and finally carbonylcaprolactam group. Anionic ring opening copolymerization of -caprolactam took place onto the macroinitiator to give a graft copolymer of PPO and Nylon 6. The structure of intermediate materials and the graft copolymer were characterized by 1H NMR, 13C NMR, and IR spectroscopy. Glass transition temperatures and melting temperatures of these materials are also reported. It is found that the copolymer has a microphase-separated morphology even with segment molecular weight as low as 3000.  相似文献   
152.
Louri A  Sung H 《Applied optics》1995,34(29):6714-6722
The interconnection network structure can be the deciding and limiting factor in the cost and the performance of parallel computers. One of the most popular point-to-point interconnection networks for parallel computers today is the hypercube. The regularity, logarithmic diameter, symmetry, high connectivity, fault tolerance, simple routing, and reconfigurability (easy embedding of other network topologies) of the hypercube make it a very attractive choice for parallel computers. Unfortunately the hypercube possesses a major drawback, which is the complexity of its node structure: the number of links per node increases as the network grows in size. As an alternative to the hypercube, the binary de Bruijn (BdB) network has recently received much attention. The BdB not only provides a logarithmic diameter, fault tolerance, and simple routing but also requires fewer links than the hypercube for the same network size. Additionally, a major advantage of the BdB network is a constant node degree: the number of edges per node is independent of the network size. This makes it very desirable for large-scale parallel systems. However, because of its asymmetrical nature and global connectivity, it poses a major challenge for VLSI technology. Optics, owing to its three-dimensional and globalconnectivity nature, seems to be very suitable for implementing BdB networks. We present an implementation methodology for optical BdB networks. The distinctive feature of the proposed implementation methodology is partitionability of the network into a few primitive operations that can be implemented efficiently. We further show feasibility of the presented design methodology by proposing an optical implementation of the BdB network.  相似文献   
153.
A photomultiplication (PM)-type organic photodetector (OPD) that exploits the ionic motion in CsPbI3 perovskite quantum dots (QDs) is demonstrated. The device uses a QD monolayer as a PM-inducing interlayer and a donor–acceptor bulk heterojunction (BHJ) layer as a photoactive layer. When the device is illuminated, negative ions in the CsPbI3 QD migrate and accumulate near the interface between the QDs and the electrode; these processes induce hole injection from the electrode and yield the PM phenomenon with an external quantum efficiency (EQE) >2000% at a 3 V applied bias. It is confirmed that the ionic motion of the CsPbI3 QDs can induce a shift in the work function of the QD/electrode interface and that the dynamics of ionic motion determines the response speed of the device. The PM OPD showed a large EQE-bandwidth product >106 Hz with a −3 dB frequency of 125 kHz at 3 V, which is one of the highest response speeds reported for a PM OPD. The PM-inducing strategy that exploits ionic motion of the interlayer is a potential approach to achieving high-efficiency PM OPDs.  相似文献   
154.
3D printing of conductive elastomers is a promising route to personalized health monitoring applications due to its flexibility and biocompatibility. Here, a one-part, highly conductive, flexible, stretchable, 3D printable carbon nanotube (CNT)-silicone composite is developed and thoroughly characterized. The one-part nature of the inks: i) enables printing without prior mixing and cures under ambient conditions; ii) allows direct dispensing at ≈100 µm resolution printability on nonpolar and polar substrates; iii) forms both self-supporting and high-aspect-ratio structures, key aspects in additive biomanufacturing that eliminate the need for sacrificial layers; and iv) lends efficient, reproducible, and highly sensitive responses to various tensile and compressive stimuli. The high electrical and thermal conductivity of the CNT-silicone composite is further extended to facilitate use as a flexible and stretchable heating element, with applications in body temperature regulation, water distillation, and dual temperature sensing and Joule heating. Overall, the facile fabrication of this composite points to excellent synergy with direct ink writing and can be used to prepare patient-specific wearable electronics for motion detection and cardiac and respiratory monitoring devices and toward advanced personal health tracking and bionic skin applications.  相似文献   
155.
The safety of patients and the quality of medical care provided to them are vital for their wellbeing. This study establishes a set of RFID (Radio Frequency Identification)-based systems of patient care based on physiological signals in the pursuit of a remote medical care system. The RFID-based positioning system allows medical staff to continuously observe the patient's health and location. The staff can thus respond to medical emergencies in time and appropriately care for the patient. When the COVID-19 pandemic broke out, the proposed system was used to provide timely information on the location and body temperature of patients who had been screened for the disease. The results of experiments and comparative analyses show that the proposed system is superior to competing systems in use. The use of remote monitoring technology makes user interface easier to provide high-quality medical services to remote areas with sparse populations, and enables better care of the elderly and patients with mobility issues. It can be found from the experiments of this research that the accuracy of the position sensor and the ability of package delivery are the best among the other related studies. The presentation of the graphical interface is also the most cordial among human-computer interaction and the operation is simple and clear.  相似文献   
156.
All‐solution processed, high‐performance wearable strain sensors are demonstrated using heterostructure nanocrystal (NC) solids. By incorporating insulating artificial atoms of CdSe quantum dot NCs into metallic artificial atoms of Au NC thin film matrix, metal–insulator heterostructures are designed. This hybrid structure results in a shift close to the percolation threshold, modifying the charge transport mechanism and enhancing sensitivity in accordance with the site percolation theory. The number of electrical pathways is also manipulated by creating nanocracks to further increase its sensitivity, inspired from the bond percolation theory. The combination of the two strategies achieves gauge factor up to 5045, the highest sensitivity recorded among NC‐based strain gauges. These strain sensors show high reliability, durability, frequency stability, and negligible hysteresis. The fundamental charge transport behavior of these NC solids is investigated and the combined site and bond percolation theory is developed to illuminate the origin of their enhanced sensitivity. Finally, all NC‐based and solution‐processed strain gauge sensor arrays are fabricated, which effectively measure the motion of each finger joint, the pulse of heart rate, and the movement of vocal cords of human. This work provides a pathway for designing low‐cost and high‐performance electronic skin or wearable devices.  相似文献   
157.
158.
The performance of plasmonic Au nanostructure/metal oxide heterointerface shows great promise in enhancing photoactivity, due to its ability to confine light to the small volume inside the semiconductor and modify the interfacial electronic band structure. While the shape control of Au nanoparticles (NPs) is crucial for moderate bandgap semiconductors, because plasmonic resonance by interband excitations overlaps above the absorption edge of semiconductors, its critical role in water splitting is still not fully understood. Here, first, the plasmonic effects of shape‐controlled Au NPs on bismuth vanadate (BiVO4) are studied, and a largely enhanced photoactivity of BiVO4 is reported by introducing the octahedral Au NPs. The octahedral Au NP/BiVO4 achieves 2.4 mA cm?2 at the 1.23 V versus reversible hydrogen electrode, which is the threefold enhancement compared to BiVO4. It is the highest value among the previously reported plasmonic Au NPs/BiVO4. Improved photoactivity is attributed to the localized surface plasmon resonance; direct electron transfer (DET), plasmonic resonant energy transfer (PRET). The PRET can be stressed over DET when considering the moderate bandgap semiconductor. Enhanced water oxidation induced by the shape‐controlled Au NPs is applicable to moderate semiconductors, and shows a systematic study to explore new efficient plasmonic solar water splitting cells.  相似文献   
159.
There are two methods applied for three-dimensional digital image correlation method to measure three-dimensional displacement. One is to measure the spatial coordinates of measuring points by analyzing the images. Then, the displacement vectors of these points can be calculated using the spatial coordinates of these points obtained at different stages. The other is to calibrate the parameters for individual measuring points locally. Then, the local displacements of these points can be measured directly. This study proposes a simple local three-dimensional displacement measurement method. Without any complicated distortion correction processes, this method can be used to measure small displacement in the three-dimensional space through a simple calibration process. A laboratory experiment and field experiment are carried out to prove the accuracy of this proposed method. Laboratory test errors of one-dimensional experiment are similar to the accuracy of the XYZ table; the error in Z-direction is only 0.0025% of the object distance. The measurement error of laboratory test is about 0.0033% of the object distance for local three-dimensional displacement measurement test. Test and analysis results of field test display that in-plane displacement error is only 0.12 mm, and the out-of-plane error is 1.1 mm for 20 m × 30 m measuring range. The out-of-plane error is only about 10 PPM of the object distance. These test and analysis results show that this proposed method can achieve very high accuracy under small displacement for both of laboratory and field tests.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号