首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1018篇
  免费   55篇
  国内免费   4篇
电工技术   12篇
综合类   1篇
化学工业   397篇
金属工艺   30篇
机械仪表   18篇
建筑科学   17篇
矿业工程   3篇
能源动力   61篇
轻工业   40篇
水利工程   14篇
石油天然气   5篇
无线电   59篇
一般工业技术   228篇
冶金工业   93篇
原子能技术   11篇
自动化技术   88篇
  2024年   5篇
  2023年   16篇
  2022年   18篇
  2021年   42篇
  2020年   48篇
  2019年   43篇
  2018年   44篇
  2017年   48篇
  2016年   51篇
  2015年   31篇
  2014年   54篇
  2013年   88篇
  2012年   59篇
  2011年   61篇
  2010年   50篇
  2009年   35篇
  2008年   46篇
  2007年   31篇
  2006年   41篇
  2005年   30篇
  2004年   23篇
  2003年   10篇
  2002年   17篇
  2001年   13篇
  2000年   7篇
  1999年   4篇
  1998年   18篇
  1997年   11篇
  1996年   14篇
  1995年   12篇
  1994年   8篇
  1993年   13篇
  1992年   10篇
  1991年   2篇
  1990年   3篇
  1989年   8篇
  1988年   7篇
  1987年   13篇
  1986年   9篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   6篇
  1977年   6篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1970年   2篇
排序方式: 共有1077条查询结果,搜索用时 15 毫秒
41.
Polypropylene/Pine apple leaf fiber (PP/PALF)‐reinforced nanocomposites were fabricated using melt blending technique in a twin‐screw extruder (Haake Rheocord 9000). Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of nanoclay in PP/PALF composites were investigated. It was observed that the tensile, flexural, and impact properties of PP increase with the increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % PALF and 5 wt % MA‐g‐PP exhibited optimum mechanical performance with an increase in tensile strength to 31%, flexural strength to 45% when compared with virgin PP. Addition of nanoclay results in a further increase in tensile and flexural strength of PP/PALF composites to 20 and 24.3%, which shows intercalated morphology. However, addition of nanoclay does not show any substantial increase in impact strength when compared with PP/PALF composites. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), confirming a strong influence between the fiber/nanoclay and MA‐g‐PP. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties when compared with the virgin matrix. TEM micrographs also showed few layers of agglomerated clay galleries along with mixed nanomorphology in the nanocomposites. Wide angle X‐ray diffraction studies indicated an increase in d‐spacing from 22.4 Å in Cloisite 20A to 40.1 Å in PP/PALF nanocomposite because of improved intercalated morphology. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
42.
43.
Interface shear strength between soil and geosynthetics mainly depends on the mechanical and physical properties of soil, geosynthetics and the normal stress acting at the interface. This paper presents results of an extensive experimental investigation carried out on sand-geosynthetic interface using modified large direct shear box. The study focusses on the shearing mechanism at the sand-geosynthetic interface and the effect of different parameters on the shearing mechanism. Smooth HDPE geomembrane, nonwoven needle punched geotextile and two types of sand having different mean particle size, have been used in the present study. Microstructural investigation of deformed specimen through Field Emission Scanning Electron Microscope (FESEM) reveals the shearing mechanism which includes interlocking and fiber stretching for sand-geotextile while sliding, indentation and plowing for sand-geomembrane interface. The shearing mechanism for sand-geomembrane interface highly depends on the normal stress and degree of saturation of sand. The critical normal stress that demarcates the sliding and plowing mechanism for sand-geomembrane interface is different for dry and wet sand. The amount of scouring (or plowing) of the geomembrane surface reduces with increase in the mean particle size of sand. FESEM images revealed that the sand particles get adhered to the geotextile fibers for tests involving wet sands. The present microstructural study aided in understanding the shearing mechanism at sand-geosynthetic interface to a large extent.  相似文献   
44.
45.
Continuous cooling transformation (CCT) diagrams for HSLA-80 and HSLA-100 steels pertaining to fusion welding with heat inputs of 10 to 40 kJ/cm, and peak temperatures of 1000 °C to 1400 °C have been developed. The corresponding nonlinear cooling profiles and related γ → α phase transformation start and finish temperatures for various peak temperature conditions have been taken into account. The martensite start (M s ) temperature for each of the grades and ambient temperature microstructures were considered for mapping the CCT diagrams. The austenite condition and cooling rate are found to influence the phase transformation temperatures, transformation kinetics, and morphology of the transformed products. In the fine-grain heat-affected zone (FGHAZ) of HSLA-80 steel, the transformation during cooling begins at temperatures of 550 °C to 560 °C, and in the HSLA-100 steel at 470 °C to 490 °C. In comparison, the transformation temperature is lower by 120 °C and 30 °C in the coarse-grain heat-affected zone (CGHAZ) of HSLA-80 steel and HSLA-100 steel, respectively. At these temperatures, acicular ferrite (AF) and lath martensite (LM) phases are formed. While the FGHAZ contains a greater proportion of acicular ferrite, the CGHAZ has a higher volume fraction of LM. Cooling profiles from the same peak temperature influence the transformation kinetics with slower cooling rates producing a higher volume fraction of acicular ferrite at the expense of LM. The CCT diagrams produced can predict the microstructure of the entire HAZ and have overcome the limitations of the conventional CCT diagrams, primarily with respect to the CGHAZ.  相似文献   
46.
Interdiffusion in hypothetical ternary single-phase and two-phase diffusion couples are examined using a phase-field model by numerically solving the nonlinear Cahn-Hilliard and Ginzburg-Landau equations. For diffusion couples assembled with a regular single-phase solution, constant chemical mobilities were used to examine the development of concentration profiles including uphill diffusion and zero-flux plane. Zero-flux plane for a component was observed to develop for a diffusion couple at the composition that corresponds to the activity of that component in one of the terminal alloys. Experimental thermodynamic parameters and composition-dependent chemical mobilities were used to examine the morphological evolution of the interphase boundary in solid-to-solid, two-phase diffusion couples. Instability at the interphase boundary was introduced initially (t=0) by a small compositional fluctuation at the diffuse interface, and its evolution varied largely as a function of terminal alloys and related composition-dependent chemical mobility. This article was presented at the Multicomponent-Multiphase Diffusion Symposium in Honor of Mysore A. Dayananda, which was held during TMS 2006, the 135th Annual Meeting and Exhibition, March 12–16, 2006, in San Antonio, TX. The symposium was organized by Yongho Sohn of University of Central Florida, Carelyn E. Campbell of National Institute of Standards and Technology, Richard D. Sisson, Jr., of Worcester Polytechnic Institute, and John E. Morral of Ohio State University.  相似文献   
47.
48.
49.
The determination of the orbit of high altitude satellites with an accurate horizontal charge coupled device (CCD) sensor is considered using the extended Kalman filter. The measurement nonlinearity is removed by using a coordinate transform, and the corresponding steady state error is less than the steady state error in the Cartesian coordinate system. The performance of both of the navigational filters is evaluated for a reference geosynchronous orbit as a function of measurement error. The reduction of measurement uncertainty decreased steady state errors in position and velocity.  相似文献   
50.
Machine learning has emerged as an effective medical diagnostic support system. In a medical diagnosis problem, a set of features that are representative of all the variations of the disease are necessary. The objective of our work is to predict more accurately the presence of cardiovascular disease with reduced number of attributes. We investigate intelligent system to generate feature subset with improvement in diagnostic performance. Features ranked with distance measure are searched through forward inclusion, forward selection and backward elimination search techniques to find subset that gives improved classification result. We propose hybrid forward selection technique for cardiovascular disease diagnosis. Our experiment demonstrates that this approach finds smaller subsets and increases the accuracy of diagnosis compared to forward inclusion and back-elimination techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号