首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2027篇
  免费   108篇
  国内免费   7篇
电工技术   32篇
综合类   9篇
化学工业   678篇
金属工艺   40篇
机械仪表   73篇
建筑科学   51篇
能源动力   154篇
轻工业   270篇
水利工程   18篇
石油天然气   10篇
无线电   180篇
一般工业技术   325篇
冶金工业   39篇
原子能技术   4篇
自动化技术   259篇
  2024年   14篇
  2023年   44篇
  2022年   109篇
  2021年   154篇
  2020年   103篇
  2019年   102篇
  2018年   127篇
  2017年   116篇
  2016年   138篇
  2015年   94篇
  2014年   132篇
  2013年   220篇
  2012年   180篇
  2011年   157篇
  2010年   95篇
  2009年   72篇
  2008年   40篇
  2007年   32篇
  2006年   26篇
  2005年   25篇
  2004年   21篇
  2003年   19篇
  2002年   14篇
  2001年   18篇
  2000年   13篇
  1999年   5篇
  1998年   13篇
  1997年   4篇
  1996年   8篇
  1995年   11篇
  1994年   14篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有2142条查询结果,搜索用时 1 毫秒
31.
Journal of Mechanical Science and Technology - Facility layout planning (FLP) has an important role in manufacturing industries. There are few approaches to solve FLP such as procedural,...  相似文献   
32.
Optical tomography provides a means for the determination of the spatial distribution of materials with different optical density in a volume by non-intrusive means. This paper presents results of concentration measurements of gas bubbles in a water column using an optical tomography system. A hydraulic flow rig is used to generate vertical air-water two-phase flows with controllable bubble flow rate. Two approaches are investigated. The first aims to obtain an average gas concentration at the measurement section, the second aims to obtain a gas distribution profile by using tomographic imaging. A hybrid back-projection algorithm is used to calculate concentration profiles from measured sensor values to provide a tomographic image of the measurement cross-section. The algorithm combines the characteristic of an optical sensor as a hard field sensor and the linear back projection algorithm.  相似文献   
33.
Deep drawing of sheet metals using Maslennikov’s technique has been analyzed by analytical and finite element simulation approaches. A new friction model based on local contact conditions has been used in the finite element (FE) simulations of the process. Compared to traditional Coulomb friction model, the results of FE simulations with the new friction model show good correlation with analytical calculations. The effects of key process parameters such as rubber ring thickness, ring inner diameter, die hole diameter, and die profile radius on the results have been investigated. The results showed that very deep cups without thinning in the side wall portion can be achieved with this process. Based on the results of FE analysis, it was found that the maximum drawing ratio can be achieved by adopting a combination of process parameters which correspond to points nearest to the fracture limit.  相似文献   
34.
This paper deals with the deep drawing of metal cups using the Marform process. Using this technique, higher limiting drawing ratios can be obtained compared with the conventional deep drawing process. The analytical model of the process is presented initially, followed by the finite element simulations using ABAQUS software. A new friction model based on local contact conditions is presented and used in the finite element (FE) simulations of the process. Compared with traditional Coulomb friction model, the results of the FE simulations with the new friction model showed good correlation with experimental results. The results showed that the maximum thinning occurs at the punch profile portion, and by increasing the forming pressure, thinning of the sheet metal propagates from the punch profile portion to the side wall. At low forming pressures, wrinkles appear in the flange, whilst at higher pressures, fracture is the main defect of the Marform process.  相似文献   
35.
High-speed machining (HSM) has emerged as a key technology in rapid tooling and manufacturing applications. Compared with traditional machining, the cutting speed, feed rate has been great progress, and the cutting mechanism is not the same. HSM with coated carbide cutting tools used in high-speed, high temperature situations and cutting more efficient and provided a lower surface roughness. However, the demand for high quality focuses extensive attention to the analysis and prediction of surface roughness and cutting force as the level of surface roughness and the cutting force partially determine the quality of the cutting process. This paper presents an optimization method of the machining parameters in high-speed machining of stainless steel using coated carbide tool to achieve minimum cutting forces and better surface roughness. Taguchi optimization method is the most effective method to optimize the machining parameters, in which a response variable can be identified. The standard orthogonal array of L9 (34) was employed in this research work and the results were analyzed for the optimization process using signal to noise (S/N) ratio response analysis and Pareto analysis of variance (ANOVA) to identify the most significant parameters affecting the cutting forces and surface roughness. For such application, several machining parameters are considered to be significantly affecting cutting forces and surface roughness. These parameters include the lubrication modes, feed rate, cutting speed, and depth of cut. Finally, conformation tests were carried out to investigate the improvement of the optimization. The result showed a reduction of 25.5% in the cutting forces and 41.3% improvement on the surface roughness performance.  相似文献   
36.
Confronted with the contemporary challenges of maximising energy efficiency with minimal impact on the environment, the automotive industry has developed various technologies to tackle them. Most of these technologies, however, have wider implications on the tribological performance of the automotive engines due to resultant soot build-up. This paper reviews the effects that attempts by stakeholders to satisfy requirements for reduced fuel consumption, reduced emissions and extended service intervals have had on increasing soot levels to an extent that can lead to engine component failure. Three areas have been identified that have either not been explored or not widely explored in the study of automotive soot namely: numerical simulation and modelling of soot wear, soot effects on wear of actual engine components and the wear and friction performance of non-metallic materials used in internal combustion engines. A paper-grading system is also utilised to present an overview of how sooty oil-related research covers various areas.  相似文献   
37.
A study of hygrothermal aging, in terms of the kinetics of moisture absorption by nylon 6.6 and its carbon fiber-reinforced composites, has been undertaken. The diffusion of water into the various materials was investigated at 100% relative humidity, by immersion of specimens in water at temperatures of between 25 and 100°C. A mathematical treatment used in analyzing the data was that of a single free phase model of diffusion, which assumed Fickian diffusion and utilized Fick's second law of diffusion. Good agreement was observed between the experimental and theoretical values. The equilibrium moisture content and the apparent diffusion coefficient of the various composites were evaluated. Hygrothermal aging has reduced the tensile properties of both unreinforced and reinforced nylon 6.6, albeit a better recoverability of the properties was achieved by the former after drying. This behavior is explained in terms of the combined action of moisture-induced plasticization and interfacial degradation. © 1994 John Wiley & Sons, Inc.  相似文献   
38.
叶轮曲率半径与离心泵性能关系的研究   总被引:1,自引:0,他引:1  
Mohd.  A 蒋修治 《流体机械》2001,29(3):12-14
对离心泵的性能和消耗功率与叶轮曲率半径的关系进行了实验分析。采用了两种实验方法(常温流体和高温流体)对5种不同半径和角度的叶轮模型进行了试验。结果表明,叶轮的曲率半径和总出口面积对离心泵性能有明显的影响。  相似文献   
39.
The mechanical properties of composites consisting of high-density polyethylene (HDPE) and oil palm fibrous wastes—that is, empty fruit bunch (EFB)—have been investigated. Tensile modulus showed an increase, whereas tensile strength, elongation at break, and impact strength decreased with increasing filler loading. The strong tendency of EFB to exist in the form of fiber bundles and the poor filler–matrix interaction is believed to be responsible for the poor strength displayed by the composites. Attempts to improve these properties using two types of coupling agents, that is, 3-aminopropyltrimethoxysilane (3-APM) and 3-aminopropyltriethoxysilane (3-APE) and two types of compatibilizers, poly(propylene–acrylic acid) (PPAA) and poly(propylene–ethylene–acrylic acid), (PPEAA), are described. While almost all chemical treatments increased the stiffness of the composites, limited improvement has been observed in the case of tensile strength. This have been attributed to the presence of fiber bundles that remain intact even after several types of chemical treatment have been carried out. Thus, the role of EFB as reinforcing agent is not fully realized. Scanning electron microscopy (SEM) micrographs revealed that the main energy-absorbing mechanisms contributing towards toughness enhancement is through the fiber bundle pull-out process. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 2189–2203, 1998  相似文献   
40.
Dynamically vulcanized poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) thermoplastic elastomers (TPEs) were prepared with a Brabender plasticorder coupled with a mixing attachment by melt mixing. The blends were prepared at 150°C at a rotor speed of 50 rpm. Curatives concentration was steadily increased from 0 to 1 phr in order to study the vulcanization effect on the plasticized blend. The effectiveness of the dynamic vulcanization was indicated by the Brabender plastograms. The properties investigated include mass swell, tensile strength, elongation at break, modulus at 100% elongation (M100), tear strength, and hardness. The PVC/ENR samples were exposed to two types of environments, namely, air and oil under otherwise identical conditions. The effect of oil and thermooxidative aging on the mechanical properties were characterized at room temperature and 100°C. It was found that at ambient temperature the samples immersed in oil possessed similar properties to those that were exposed to air. Significant enhancement in mechanical properties were observed for both environments at 100°C. This has been attributed to the increase in crosslink density which was manifested by a steady reduction in percent mass swell with increased sulfur loading. The excellent mechanical behavior of the PVC/ENR TPEs even after immersing the samples in oil at 100°C has provided a good indication of the oil resistance of the materials. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1357–1366, 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号