首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1548篇
  免费   72篇
  国内免费   10篇
电工技术   24篇
综合类   4篇
化学工业   344篇
金属工艺   37篇
机械仪表   54篇
建筑科学   26篇
能源动力   108篇
轻工业   147篇
水利工程   8篇
石油天然气   9篇
无线电   201篇
一般工业技术   304篇
冶金工业   87篇
原子能技术   3篇
自动化技术   274篇
  2024年   6篇
  2023年   34篇
  2022年   77篇
  2021年   117篇
  2020年   87篇
  2019年   73篇
  2018年   113篇
  2017年   82篇
  2016年   82篇
  2015年   57篇
  2014年   78篇
  2013年   130篇
  2012年   76篇
  2011年   85篇
  2010年   65篇
  2009年   52篇
  2008年   48篇
  2007年   45篇
  2006年   40篇
  2005年   30篇
  2004年   14篇
  2003年   21篇
  2002年   10篇
  2001年   13篇
  2000年   11篇
  1999年   9篇
  1998年   28篇
  1997年   21篇
  1996年   12篇
  1995年   18篇
  1994年   10篇
  1993年   7篇
  1992年   5篇
  1991年   3篇
  1990年   6篇
  1989年   7篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   7篇
  1984年   6篇
  1983年   4篇
  1982年   2篇
  1981年   7篇
  1980年   2篇
  1979年   6篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有1630条查询结果,搜索用时 0 毫秒
51.
Breast cancer is a diverse disease caused by mutations in multiple genes accompanying epigenetic aberrations of hazardous genes and protein pathways, which distress tumor-suppressor genes and the expression of oncogenes. Alteration in any of the several physiological mechanisms such as cell cycle checkpoints, DNA repair machinery, mitotic checkpoints, and telomere maintenance results in genomic instability. Theranostic has the potential to foretell and estimate therapy response, contributing a valuable opportunity to modify the ongoing treatments and has developed new treatment strategies in a personalized manner. “Omics” technologies play a key role while studying genomic instability in breast cancer, and broadly include various aspects of proteomics, genomics, metabolomics, and tumor grading. Certain computational techniques have been designed to facilitate the early diagnosis of cancer and predict disease-specific therapies, which can produce many effective results. Several diverse tools are used to investigate genomic instability and underlying mechanisms. The current review aimed to explore the genomic landscape, tumor heterogeneity, and possible mechanisms of genomic instability involved in initiating breast cancer. We also discuss the implications of computational biology regarding mutational and pathway analyses, identification of prognostic markers, and the development of strategies for precision medicine. We also review different technologies required for the investigation of genomic instability in breast cancer cells, including recent therapeutic and preventive advances in breast cancer.  相似文献   
52.
Two new synthons, Fmoc-L-Arg(biphenyl-4-sulphonyl)-OH ( 8 ) and Fmoc-Arg(4-methoxy-3-t-butylbenzenesulphonyl)-OH ( 14 ), are prepared for the synthesis of arginine-containing peptides. These groups are cleaved by commonly employed trifluoroacetic acid and methanesulphonic acid. Kinetic studies reveal that extended bicyclic aromatic conjugation, as in biphenyl, slightly improves the acid lability compared to the electron-donating t-butyl group.  相似文献   
53.
54.
The rapid progression in biomaterial nanotechnology apprehends the potential of non-toxic and potent polysaccharide delivery modules to overcome oral chemotherapeutic challenges. The present study is aimed to design, fabricate and characterize polysaccharide nanoparticles for methotrexate (MTX) delivery. The nanoparticles (NPs) were prepared by Abelmoschus esculentus mucilage (AEM) and chitosan (CS) by the modified coacervation method, followed by ultra-sonification. The NPs showed much better pharmaceutical properties with a spherical shape and smooth surface of 213.4–254.2 nm with PDI ranging between 0.279–0.485 size with entrapment efficiency varying from 42.08 ± 1.2 to 72.23 ± 2.0. The results revealed NPs to possess positive zeta potential and a low polydispersity index (PDI). The in-vitro drug release showed a sustained release of the drug up to 32 h with pH-dependence. Blank AEM -CS NPs showed no in-vivo toxicity for a time duration of 14 days, accompanied by high cytotoxic effects of optimized MTX loaded NPs against MCF-7 and MD-MBA231 cells by MTT assay. In conclusion, the findings advocated the therapeutic potential of AEM/CS NPs as an efficacious tool, offering a new perspective for pH-responsive routing of anticancer drugs with tumor cells as a target.  相似文献   
55.
Out of the many promising applications of metal hydrides, refrigeration, heat pumping and heat transformation are important. In order to achieve improved performance, a novel three-alloy cycle is proposed in which, for heat input at an intermediate temperature, heat outputs at high temperature and also at warm temperature are obtained in addition to refrigeration. The performance of this cycle using the alloys LaNi4.6Sn0.4, LaNi4.7Al0.3 and MmNi4.5Al0.5 is studied based on thermodynamics and reaction kinetics. Coefficients of performance, half-cycle times and specific alloy outputs are evaluated.  相似文献   
56.
Gold(Au)thin films were deposited on SiO2 substrate under argon(Ar)gas environment using RF(radio frequency)magnetron sputtering at room temperature for various...  相似文献   
57.
Individual and combined effects of high pressure nitrous oxide (HPN2O), heat, and antimicrobials on the inactivation of Escherichia coli, Listeria innocua, and Bacillus atrophaeus endospores in milk were all evaluated after 20-min treatments. Stand-alone milk treatments with HPN2O (15.2 MPa), heat (45 and 65 °C), or nisin (50 and 150 IU mL?1) resulted in log10 reductions ranging only from 0.1 to 2.1 for E. coli and L. innocua. Combining HPN2O (15.2 MPa) with heat (65 °C) inactivated 6.0 and 5.1 log10 in the vegetative bacteria, respectively. Similarly, reductions of 5.9 and ≥ 6.0 log10 of respective E. coli and L. innocua cells in milk were achieved through a combination of HPN2O (15.2 MPa), heat (65 °C), and nisin (150 IU mL?1). A 2.5 log10 cycle inactivation of spores was obtained by HPN2O, nisin (at both 50 and 150 IU mL?1), and lysozyme (50 μg mL?1) at 85 °C. Combining these processing techniques resulted in significantly greater microbial inactivation (p < 0.05) than the sum of individual reductions from each treatment alone, indicating synergistic effects. HPN2O irrespective of processing temperatures did not cause any occurrence of sub-lethally injured cells or disruption in colloidal stability of milk at 65 and 85 °C (p ≥ 0.05). Color and pH changes in milk following the most demanding treatment conditions were minimal.  相似文献   
58.
59.
The formation of neurofibrillary tangles (NFT) with β-sheet-rich structure caused by abnormal aggregation of misfolded microtubule-associated protein Tau is a hallmark of tauopathies, including Alzheimer’s Disease. It has been reported that acetylation, especially K174 located in the proline-rich region, can largely promote Tau aggregation. So far, the mechanism of the abnormal acetylation of Tau that affects its misfolding and aggregation is still unclear. Therefore, revealing the effect of acetylation on Tau aggregation could help elucidate the pathogenic mechanism of tauopathies. In this study, molecular dynamics simulation combined with multiple computational analytical methods were performed to reveal the effect of K174 acetylation on the spontaneous aggregation of Tau peptide 171IPAKTPPAPK180, and the dimerization mechanism as an early stage of the spontaneous aggregation was further specifically analyzed by Markov state model (MSM) analysis. The results showed that both the actual acetylation and the mutation mimicking the acetylated state at K174 induced the aggregation of the studied Tau fragment; however, the effect of actual acetylation on the aggregation was more pronounced. In addition, acetylated K174 plays a major contributing role in forming and stabilizing the antiparallel β-sheet dimer by forming several hydrogen bonds and side chain van der Waals interactions with residues I171, P172, A173 and T175 of the corresponding chain. In brief, this study uncovered the underlying mechanism of Tau peptide aggregation in response to the lysine K174 acetylation, which can deepen our understanding on the pathogenesis of tauopathies.  相似文献   
60.
Medium-chain-length poly-3-hydroxyalkanoates (PHA) and carboxyl group-functionalized multiwalled carbon nanotubes (MC) were used to fabricate a composite membrane for application in a double-chambered microbial fuel cell (MFC). MC was composited into PHA at 5%, 10%, and 20% w/w via ultrasound dispersion blending method. PHA-MC composite was compared with Nafion 117 as proton exchange membrane in MFC operated with palm oil mill effluent (POME) wastewater. The composite exhibited prerequisite separator membrane characteristics. The dispersion of MC in the polymer matrix increased its interfacial surface area and water uptake properties. PHA-MC10% membrane in MFC showed maximum power density of 361?mW/m2, which was comparable with Nafion 117 (372?mW/m2). Internal resistance decrease, chemical oxygen demand (COD) removal, coulombic efficiency (CE), and conductivity of the PHA-MC10% were superior to Nafion 117. The environmental-friendly material could provide an alternative towards realizing practical MFC application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号