首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4625篇
  免费   161篇
  国内免费   20篇
电工技术   290篇
综合类   15篇
化学工业   1416篇
金属工艺   129篇
机械仪表   140篇
建筑科学   128篇
矿业工程   5篇
能源动力   214篇
轻工业   419篇
水利工程   18篇
石油天然气   6篇
无线电   344篇
一般工业技术   948篇
冶金工业   174篇
原子能技术   133篇
自动化技术   427篇
  2023年   33篇
  2022年   52篇
  2021年   132篇
  2020年   61篇
  2019年   77篇
  2018年   90篇
  2017年   69篇
  2016年   116篇
  2015年   87篇
  2014年   135篇
  2013年   263篇
  2012年   259篇
  2011年   294篇
  2010年   246篇
  2009年   264篇
  2008年   295篇
  2007年   232篇
  2006年   226篇
  2005年   146篇
  2004年   154篇
  2003年   176篇
  2002年   150篇
  2001年   82篇
  2000年   82篇
  1999年   75篇
  1998年   102篇
  1997年   77篇
  1996年   71篇
  1995年   68篇
  1994年   56篇
  1993年   66篇
  1992年   58篇
  1991年   54篇
  1990年   34篇
  1989年   51篇
  1988年   18篇
  1987年   35篇
  1986年   24篇
  1985年   41篇
  1984年   22篇
  1983年   35篇
  1982年   31篇
  1981年   29篇
  1980年   18篇
  1979年   23篇
  1978年   25篇
  1977年   19篇
  1976年   11篇
  1975年   13篇
  1973年   8篇
排序方式: 共有4806条查询结果,搜索用时 15 毫秒
141.
Poly(2,6-dimethyl-1,4-phenylene ether) (PPE) is an engineering plastic with high heat distortion temperature. Melt processing of neat PPE is usually accompanied with thermal degradation. The degradation problem is solved by blending with polystyrene to reduce the processing temperature. We propose an alternative using triallylisocyanurate (TAIC). TAIC is a low viscosity liquid that can be cured by peroxide, e.g. α,α′-bis(t-butylperoxy-m-isopropyl)benzene (PBP), to provide a thermoset. The PPE/TAIC mixture was shown to have the upper critical solution temperature (UCST) type phase behavior. At the single-phase regime above UCST and below the cure temperature (∼180°C for PBP), the mixture had a low viscosity, less viscous than a conventional thermoplastic such as PC and PP. That is, a nice window for injection molding was available, e.g., at 100°C to 160°C for a 50/50 blend. After injecting into a hot mold set at cure temperature, the blend cured in a short time (∼80% conversion in 5 min). Then the molded and partly cured material kept its shape and dimensions during post-cure in a hot chamber at higher temperature (e.g. 250°C). Using transmission electron microscopy and dynamic mechanical analyses, it was shown that the cured blend had a bicontinuous two-phase structure with periodic spacings of ∼30 nm, suggesting a structure formation via a spinodal decomposition driven by the increase in molecular weight of TAIC during cure. The cured material showed excellent flexural strength and high chemical resistance.  相似文献   
142.
Radiotherapy is a definitive treatment for early-stage cervical cancer; however, a subset of this disease recurs locally, necessitating establishment of predictive biomarkers and treatment strategies. To address this issue, we performed gene panel-based sequencing of 18 stage IB cervical cancers treated with definitive radiotherapy, including two cases of local recurrence, followed by in vitro and in silico analyses. Simultaneous mutations in KRAS and SMAD4 (KRASmt/SMAD4mt) were detected only in a local recurrence case, indicating potential association of this mutation signature with radioresistance. In isogenic cell-based experiments, a combination of activating KRAS mutation and SMAD4 deficiency led to X-ray resistance, whereas either of these factors alone did not. Analysis of genomic data from 55,308 cancers showed a significant trend toward co-occurrence of mutations in KRAS and SMAD4. Gene Set Enrichment Analysis of the Cancer Cell Line Encyclopedia dataset suggested upregulation of the pathways involved in epithelial mesenchymal transition and inflammatory responses in KRASmt/SMAD4mt cancer cells. Notably, irradiation with therapeutic carbon ions led to robust killing of X-ray-resistant KRASmt/SMAD4mt cancer cells. These data indicate that the KRASmt/SMAD4mt signature is a potential predictor of radioresistance, and that carbon ion radiotherapy is a potential option to treat early-stage cervical cancers with the KRASmt/SMAD4mt signature.  相似文献   
143.
The ability of Pluronic F127 (PF127) conjugated with tetrapeptide Gly-Arg-Gly-Asp (GRGD) as a sequence of Arg-Gly-Asp (RGD) peptide to form the investigated potential hydrogel (hereafter referred to as 3DG bioformer (3BE)) to produce spheroid, biocompatibility, and cell invasion ability, was assessed in this study. The fibroblast cell line (NIH 3T3), osteoblast cell line (MG-63), and human breast cancer cell line (MCF-7) were cultured in the 3BE hydrogel and commercial product (Matrigel) for comparison. The morphology of spheroid formation was evaluated via optical microscopy. The cell viability was observed through cell counting Kit-8 assay, and cell invasion was investigated via Boyden chamber assay. Analytical results indicated that 3BE exhibited lower spheroid formation than Matrigel. However, the 3BE appeared biocompatible to NIH 3T3, MG-63, and MCF-7 cells. Moreover, cell invasion ability and cell survival rate after invasion through the 3BE was displayed to be comparable to Matrigel. Thus, these findings demonstrate that the 3BE hydrogel has a great potential as an alternative to a three-dimensional cell culture for drug screening applications.  相似文献   
144.
145.
Chemiluminescence (CL) analysis was used for determining the oxidation layer formed by the irradiation of polypropylene for medical supplies. The depth of the oxidation layer from the surface depended on dose rate and increased with decreasing dose rate. The oxidation occurred remarkably at a region near the surface area of the film where the diffusion of oxygen is more sufficient. On the contrary, there was very little oxidation in the interior portion. The oxidation layers of polypropylene samples irradiated with electron beam showed U-shaped profiles in the cross-section of film as did as a sample irradiated with γ-rays. However, the degree of oxidation by irradiation with electron beam was very small; CL intensity at the surface area was only one-third that for the γ-irradiated samples.  相似文献   
146.
Three North Dakota lignites with almost the same percentage carbon have been used to determine the relation between chemical structure and reactivity to hydrogenation. Average structural indices of the lignites were estimated using the pyridine-soluble products after alcohol-alkali treatment, the structural indices obtained at various reaction times being extrapolated to zero reaction time. Hydrogenation was influenced by the average structure, with the lignite having higher aromaticity, higher molecular weight of the pyridine extract from the alcohol-alkali reaction product, larger aromatic ring size and lower content of aliphatic structure, showing a smaller degree of conversion.  相似文献   
147.
The paper presents two types of a passive safety containment for a near future BWR. They are named Mark S and Mark X containment. One of their common merits is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. The PCV pressure can be moderated within the design pressure. Another merit is the capability to submerge the PCV and the RPV above the core level. The third merit is robustness against external events such as a large commercial airplane crash. Both the containments have a passive cooling core catcher that has radial cooling channels. The Mark S containment is made of reinforced concrete and applicable to a large power BWR up to 1830 MWe. The Mark X containment has the steel secondary containment and can be cooled by natural circulation of outside air. It can accommodate a medium power BWR up to 1380 MWe. In both cases the plants have active and passive safety systems constituting in-depth hybrid safety (IDHS). The IDHS provides not only hardware diversity between active and passive safety systems but also more importantly diversity of the ultimate heat sinks between the atmosphere and the sea water. Although the plant concept discussed in the paper uses well-established technology, plant performance including economy is innovatively and evolutionally improved. Nothing is new in the hardware but everything is new in the performance.  相似文献   
148.
In order to improve the prediction accuracy of one-dimensional interfacial force formulated by ‘Andersen’ approach, the distribution parameter in a drift–flux correlation, void fraction covariance, and relative velocity covariance has been modeled for dispersed boiling two-phase flow in a vertical rod bundle. The distribution parameter has been derived by a bubble-layer thickness model. The correlations of void fraction covariance and relative velocity covariance have been developed based on prototypic 8 × 8 rod bundle data. The correlation of void fraction covariance agrees with the bundle data with the mean absolute error, standard deviation, mean relative deviation, and mean absolute relative deviation being 0.00120, 0.0415, ?0.173%, and 1.80%, respectively. The correlation of relative velocity covariance agrees with the bundle data with the mean absolute error, standard deviation, mean relative deviation, and mean absolute relative deviation being ?0.00241, 0.0452, ?0.0316%, and 2.52%, respectively. In view of the great importance of void fraction covariance and relative velocity covariance on the one-dimensional interfacial drag force formulation, it is highly recommended to include the void fraction covariance and relative velocity covariance in the one-dimensional formulation of interfacial drag force used in nuclear thermal-hydraulic system analysis codes.  相似文献   
149.
For basic information on new regulatory criteria, the dose rate around a thick target bombarded by proton, electron, or carbon beam having incident energy of 10 MeV–50 GeV (per nucleon in case of carbon) was simulated using the PHITS Monte Carlo code. Based on this simulation, the benchmark which is ‘1 Sv/h at 1 m away from the beam line’ assuming 1% beam loss was evaluated, and compared with the criteria in France and Canada. Based on this evaluation, a new regulatory criteria has been established for requiring on-site emergency preparedness for accelerator facilities in Japan, which is required for the ion accelerator beyond the ion beam of 100 MeV/nucleon and 0.5 kW beam power, and the electron accelerator beyond the electron beam of 50 MeV energy and 1 kW beam power.  相似文献   
150.
In gas–liquid two-phase flow simulation for reactor safety analysis, interfacial momentum transfer in two-fluid model plays an important role in predicting void fraction. Depending on flow conditions, a shape of the two-phase interface complicatedly evolves. One of the proposed approaches is to quantify the gas–liquid interface information using interfacial area transport equation. On the other hand, a more simplified and robust approach is to classify bubbles into two-groups based on their transport characteristics and utilize constitutive equations for interfacial area concentration for each group. In this paper, interfacial drag model based on the two-group interfacial area concentration correlations is implemented into system analysis code, and void fractions were calculated for the evaluation of numerical behaviors. The present analysis includes (1) comparison of one-group and two-group relative velocity models, (2) comparison with separate effect test database, (3) uncertainty evaluation of drag coefficient, (4) numerical stability assessment in flow regime transition, and (5) transient analysis for simulating the prototypic condition. Results showed that utilization of interfacial drag force term using constitutive equations of two-group interfacial area concentration yields satisfactory void fraction calculation results. The proposed solution technique is practical and advantageous in view of reducing the computational cost and simplifying the solution scheme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号