首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
化学工业   5篇
能源动力   5篇
轻工业   3篇
石油天然气   3篇
无线电   2篇
一般工业技术   13篇
冶金工业   2篇
自动化技术   6篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2018年   2篇
  2016年   1篇
  2014年   3篇
  2013年   8篇
  2012年   8篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1995年   1篇
排序方式: 共有39条查询结果,搜索用时 343 毫秒
21.
Abstract

In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, and the oil and gas phases are modeled with an equation of state. The Peng-Robinson equation of state (PR-EOS) was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on the solid model was developed and used for predicting asphaltene precipitation data reported in the literature as well as the experimental data obtained from high-pressure, high-temperature asphaltene precipitation experiments performed on Sarvak reservoir crude, one of Iranian heavy oil reserves, under pressure depletion and CO2 injection conditions. The model parameters, obtained from sensitivity analysis, were applied in the thermodynamic model. It has been found that the solid model results describe the experimental data reasonably well under pressure depletion conditions. Also, a significant improvement has been observed in predicting the asphaltene precipitation data under gas injection conditions. In particular, for the maximum value of asphaltene precipitation and for the trend of the curve after the peak point, good agreement was observed, which could not be found in the available literature.  相似文献   
22.
In the present study, a magnetic niosomal nanocarrier for co-delivery of curcumin and letrozole into breast cancer cells has been designed. The magnetic NiCoFe2O4 core was coated by a thin layer of silica, followed by a niosomal structure, allowing us to load letrozole and curcumin into the silica layer and niosomal layer, respectively, and investigate their synergic effects on breast cancer cells. Furthermore, the nanocarriers demonstrated a pH-dependent release due to the niosomal structure at their outer layer, which is a promising behavior for cancer treatment. Additionally, cellular assays revealed that the nanocarriers had low cellular uptake in the case of non-tumorigenic cells (i.e., MCF-10A) and related high viability but high cellular uptake in cancer cell lines (i.e., MDA-MB-231 and SK-BR-3) and related low viability, which is evidenced in their high cytotoxicity against different breast cancer cell lines. The cytotoxicity of the letrozole/curcumin co-loaded nanocarrier is higher than that of the aqueous solutions of both drugs, indicating their enhanced cellular uptake in their encapsulated states. In particular, NiCoFe2O4@L-Silica-L@C-Niosome showed the highest cytotoxicity effects on MDA-MB-231 and SK-BR-3 breast cancer cells. The observed cytotoxicity was due to regulation of the expression levels of the studied genes in breast cancer cells, where downregulation was observed for the Bcl-2, MMP 2, MMP 9, cyclin D, and cyclin E genes while upregulation of the expression of the Bax, caspase-3, and caspase-9 genes was observed. The flow cytometry results also revealed that NiCoFe2O4@L-Silica-L@C-Niosome enhanced the apoptosis rate in both MDA-MB-231 and SK-BR-3 cells compared to the control samples. The findings of our research show the potential of designing magnetic niosomal formulations for simultaneous targeted delivery of both hydrophobic and hydrophilic drugs into cancer cells in order to enhance their synergic chemotherapeutic effects. These results could open new avenues into the future of nanomedicine and the development of theranostic agents.  相似文献   
23.
Personnel specifications have greatest impact on total efficiency. They can help us to design work environment and enhance total efficiency. Determination of critical personnel attributes is a useful procedure to overcome complication associated with multiple inputs and outputs. The proposed algorithm assesses the impact of personnel efficiency attributes on total efficiency through Data Envelopment Analysis (DEA), Artificial Neural Network (ANN) and Rough Set Theory (RST). DEA has two roles in the proposed integrated algorithm of this study. It provides data ANN and finally it selects the best reduct through ANN result. Reduct is described as a minimum subset of attributes, completely discriminating all objects in a data set. The reduct selection is achieved by RST. ANN has two roles in the integrated algorithm. ANN results are basis for selecting the best reduct and it is also used for forecasting total efficiency. The proposed integrated approach is applied to an actual banking system and its superiorities and advantages are discussed.  相似文献   
24.

In this research, optimum shape of plate structures is sought to maximize the energy dissipation via structural shape optimization. To achieve this, isogeometric analysis (IGA) is utilized for structural analysis of plates considering elasto-plastic behavior of materials. The von Mises material model is employed for this purpose. Non-uniform rational B-splines basis functions are used for both geometry definition and approximating the unknown deformation field. The optimization problem is to maximize the structural dissipated energy until a prescribed displacement is reached and a fixed amount of material is considered in the design domain. A direct shape sensitivity analysis is performed and a mathematical based approach is employed for the optimization process. To demonstrate the efficiency of the proposed algorithm three examples are illustrated. Using the IGA prevents adjusting analysis model during the optimization process, which is time-consuming especially when iterative nonlinear analysis is performed. The results also show that large geometry modifications can be properly managed by the proposed algorithm.

  相似文献   
25.
The effect of using metal foams in double-pipe heat exchangers is investigated in this work. The advantages and drawbacks of using metal foams in these types of heat exchanger are characterized and quantified. The analysis starts with an investigation of forced convection in metal foam-filled heat exchangers using the Brinkman-Forchheimer-extended Darcy model and the Local Thermal Equilibrium (LTE) energy model. An excellent agreement is displayed between the present results and established analytical results. The presented work enables one to establish the optimum conditions for the use of metal foam-filled double-pipe heat exchangers.  相似文献   
26.
We demonstrate the self-assembled growth of vertically aligned Copper Phthalocyanine (CuPc) nanorods which are directly evaporated on fullerene (C60) islands. UV–Vis spectroscopy of CuPc nanorods, compared to planar CuPc, shows an improvement in light absorption within the visible range. Moreover, scanning electron microscopy (SEM) demonstrates the presence of well-arranged vertically aligned CuPc nanorods suggesting an increase in the donor–acceptor interface. X-ray diffraction (XRD) reveals the crystalline nature of these nanorods. Different organic photovoltaic cells have been fabricated using these nanorods. High current density achieved with the cell arrangement of CuPc/CuPc-nanorods/C60 in comparison to regular planar CuPc/C60 device. The power conversion efficiency is also doubled compared to the planar one.  相似文献   
27.
Thermodynamic modeling is known as a promising tool for phase behavior modeling of asphaltene precipitation under different conditions such as pressure depletion and CO2 injection. In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, while the oil and gas phases are modeled with an equation of state. The PR-EOS was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on an improved solid model has been developed and used for predicting asphaltene precipitation data for one of Iranian heavy crudes, under pressure depletion and CO2 injection conditions. A significant improvement has been observed in predicting the asphaltene precipitation data under gas injection conditions. Especially for the maximum value of asphaltene precipitation and for the trend of the curve after the peak point, good agreement was observed. For gas injection conditions, comparison of the thermodynamic micellization model and the improved solid model showed that the thermodynamic micellization model cannot predict the maximum of precipitation as well as the improved solid model. The non-isothermal improved solid model has been used for predicting asphaltene precipitation data under pressure depletion conditions. The pressure depletion tests were done at different levels of temperature and pressure, and the parameters of a non-isothermal model were tuned using three onset pressures at three different temperatures for the considered crude. The results showed that the model is highly sensitive to the amount of solid molar volume along with the interaction coefficient parameter between the asphaltene component and light hydrocarbon components. Using a non-isothermal improved solid model, the asphaltene phase envelope was developed. It has been revealed that at high temperatures, an increase in the temperature results in a lower amount of asphaltene precipitation and also it causes the convergence of lower and upper boundaries of the asphaltene phase envelope. This work illustrates successful application of a non-isothermal improved solid model for developing the asphaltene phase envelope of heavy crude which can be helpful for monitoring and controlling of asphaltene precipitation through the wellbore and surface facilities during heavy oil production.  相似文献   
28.
A multicomponent polysaccharide obtained from dried tubers of certain natural terrestrial orchids was chemically modified by sulfonation using chlorosulfonic acid–dimethylformamide (HClSO3–DMF) complex as a reagent. For a structural characterization of salep sulfate 1H nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectra, and Thermogravimetric analysis (TGA) curves were recorded. The sulfate content of modified salep was determined using elemental analysis. This modified biopolymer was used to prepare a new environment‐friendly heavy metal ion adsorbent, salep sulfate‐graft‐polyacrylic acid hydrogel (SS‐g‐PAA). Swelling rate and equilibrium water absorbency in various pH and saline solutions were investigated to study the effect of salep sulfate on swelling behavior of the hydrogel. In addition, the effect of sulfate content on heavy metal ion adsorption from aqueous solution was investigated. The results show that SS‐g‐PAA can effectively remove heavy metal ions (Co2+, Zn2+, Cu2+) from aqueous solution and swelling behavior of the hydrogels highly dependent on the amount of sulfate group on corresponding modified polysaccharide. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3001–3008, 2013  相似文献   
29.
An experimental study was carried out to investigate the role of various clay and non-clay minerals present in reservoir formations on steam distillation process. Dead oil samples (100 g) of two heavy oil reservoirs with 30 g of water and 10 g of crushed rock mixed with different clay minerals were kept under steam pressure with 150, 200, and 250°C in a batch autoclave reactor for a period of 40 hours, and the results were compared with respect to the changes in the density, viscosity and chemical composition of remaining heavy oil. Three different clay minerals (bentonite, kaolinite, and sepiolite) were added to the crushed rock to observe their effects. Among these clay minerals, kaolinite had the greatest effect on steam distillation. Kaolinite has an inert surface compared to other clay minerals which can be considered as an catalytic effect to make easier the evaporation of the volatile components of heavy oil during steam distillation. On the other hand, bentonite which has a swelling property in the presence of water may not allow the entrance of oil molecules because of its low permeability has retard/decrease the evaporation of volatile components. In case of kaolinite addition, density and viscosity of remaining oil are the greatest comparing with the two other minerals added. In addition, the asphaltene content of the remaining oil after distillation increased compared to original oil sample for all added clay minerals.  相似文献   
30.
Children with juvenile rheumatoid arthritis or juvenile chronic arthritis often exhibit temporomandibular joint (TMJ) involvement accompanied by pain, dysfunction, and growth abnormalities. Despite the severe functional and developmental consequences of this disease, its pathogenesis remains poorly understood, but important insights may be provided by a suitable animal model of this disease. The purpose of this study was to develop and histologically characterize a juvenile animal model of antigen-induced arthritis of the TMJ. Arthritis was induced with an intra-articular administration of ovalbumin in previously sensitized 10-week-old male New Zealand white rabbits. Sham-treated and untreated rabbits were used as controls. The TMJs were retrieved en bloc at 5, 10, 15, 35, and 55 days post-challenge for histology and matrix histochemistry. Antigen-treated joints demonstrated severe arthritis, including mononuclear cell infiltration, synovial lining and villous hyperplasia, and pannus formation, as early as 5 days after challenge; the arthritis was maintained up to 55 days post-challenge. A decrease in the area of the TMJ disc that stained positively for glycosaminoglycans was observed throughout the experimental period. Loss of collagen staining was primarily localized to sites at the junction of the synovium with bone and fibrocartilage. The histopathologic features of this model of antigen-induced arthritis of the juvenile rabbit TMJ are similar to those observed previously in adult animal models of experimental arthritis and in human rheumatoid arthritis. This animal model will be useful for understanding the pathogenesis of juvenile rheumatoid arthritis of the TMJ, and for exploring the mechanisms for aberrant craniofacial growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号