首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   738篇
  免费   0篇
综合类   1篇
化学工业   7篇
机械仪表   2篇
轻工业   4篇
无线电   3篇
一般工业技术   7篇
冶金工业   709篇
自动化技术   5篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2017年   3篇
  2016年   3篇
  2014年   1篇
  2013年   1篇
  2011年   3篇
  2009年   2篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1999年   18篇
  1998年   219篇
  1997年   114篇
  1996年   92篇
  1995年   50篇
  1994年   31篇
  1993年   38篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   12篇
  1988年   7篇
  1987年   10篇
  1986年   8篇
  1985年   14篇
  1982年   4篇
  1981年   5篇
  1980年   7篇
  1979年   1篇
  1978年   2篇
  1977年   20篇
  1976年   48篇
  1955年   1篇
排序方式: 共有738条查询结果,搜索用时 2 毫秒
681.
To understand the structural features that dictate the selectivity of diverse nonsteroidal antiinflammatory drugs for the two isoforms of the human prostaglandin H2 synthase (PGHS), the three-dimensional (3D) structure of human COX-2 was assessed by means of sequence homology modeling. The ovine COX-1 structure, solved by X-ray diffraction methods and sharing a 61% sequence identity with human COX-2, was used as template. Both structures were energy minimized using the AMBER 4.0 force field with a dielectric constant of 4r. (S)-Flurbiprofen, a nonselective COX inhibitor, and SC-558, a COX-2-selective ligand, were docked at the cyclooxygenase binding site in both isozymes, evidencing the role of different residues in the ligand-protein interaction. The 3D structures of the constructed four ligand-enzyme complexes were refined by energy minimization. Molecular dynamics simulations were also carried out, to understand more deeply the structural origins of the selectivity. Distances calculated during the dynamics process between the different ligands and the interacting residues of the two PGHS isozymes provided evidence of the flexible nature of the cyclooxygenase active site, permitting the identification of different conserved and nonconserved residues as responsible for ligand selectivity.  相似文献   
682.
683.
The synthesis of proinflammatory cytokines involves members of the mitogen-activated protein (MAP) kinase stress pathway, particularly p38 MAP kinase and c-jun NH2-terminal kinase. In this report we used hyperosmotic stress to study changes in steady-state mRNA levels and synthesis of proinflammatory cytokines in freshly obtained human peripheral blood mononuclear cells (PBMC) in vitro. There was no evidence of interleukin (IL)-8 gene expression in freshly obtained human blood despite 30 cycles of amplification of reverse-transcribed mRNA using the polymerase chain reaction. In contrast, exposure of PBMC to hyperosmotic conditions (330-410 mOsM) by the addition of NaCl to tissue culture medium induced gene expression for IL-1 alpha, IL-1 beta, and IL-8. Routine tissue culture medium is hyperosmotic (305 mOsM) compared to human plasma (280-295 mOsM), but decreasing the osmolarity to the physiological range resulted in a 50% reduction in baseline IL-8 synthesis (P < 0.001). Although hyperosmotically induced accumulation of steady-state mRNA levels for IL-1 alpha and IL-1 beta increased 50- and 7-fold over control, respectively, these were poorly translated into each respective cytokine. However, in PBMC stimulated by hyperosmotic stress, the addition of femtomolar concentrations of bacterial lipopolysaccharide, IL-1, or 1% normal human serum resulted in a synergistic synthesis (at least twice that expected) of IL-1 alpha, IL-1 beta, TNF-alpha, and IL-8.  相似文献   
684.
Dendritic morphology and passive cable properties determine many aspects of synaptic integration in complex neurons, together with voltage-dependent membrane conductances. We investigated dendritic properties of CA1 pyramidal neurons intracellularly labeled during in vivo and in vitro physiologic recordings, by using similar intracellular staining and three-dimensional reconstruction techniques. Total dendritic length of the in vivo neurons was similar to that of the in vitro cells. After correction for shrinkage, cell extent in three-dimensional representation was not different between the two groups. Both in vivo and in vitro neurons demonstrated a variable degree of symmetry, with some neurons showing more cylindrical symmetry around the main apical axis, whereas other neurons were more elliptical, with the variation likely due to preparation and preservation conditions. Branch order analysis revealed no difference in the number of branch orders or dendritic complexity. Passive conduction of dendritic signals to the soma in these neurons shows considerable attenuation, particularly with higher frequency signals (such as synaptic potentials compared with steady-state signals), despite a relatively short electrotonic length. Essential aspects of morphometric appearance and complex dendritic integration critical to CA1 pyramidal cell functioning are preserved across neurons defined from the two different hippocampal preparations used in this study.  相似文献   
685.
686.
The beta-chemokine RANTES (regulated on activation, normal T cell expressed and secreted) suppresses the infection of susceptible host cells by macrophage tropic strains of HIV-1. This effect is attributed to interactions of this chemokine with a 7-transmembrane domain receptor, CCR5, that is required for virus-cell fusion and entry. Here we identify domains of RANTES that contribute to its biological activities through structure-function studies using a new monoclonal antibody, mAb 4A12, isolated from mice immunized with recombinant human RANTES. This monoclonal antibody (mAb) blocked the antiviral activity of RANTES in infectivity assays with HIV-1Bal, and inhibited the mobilization of intracellular Ca2+ elicited by RANTES, yet recognized this chemokine bound to cell surfaces. Epitope mapping using limited proteolysis, reversed phase high-performance liquid chromatography, and mass spectrometry suggest that residues 55-66 of RANTES, which include the COOH-terminal alpha-helical region implicated as the glycosaminoglycan (GAG) binding domain, overlap the determinant recognized by mAb 4A12. This is supported by affinity chromatography studies, which showed that RANTES could be eluted specifically by heparin from a mAb 4A12 immunoaffinity matrix. Removal of cell surface GAGs by enzymatic digestion greatly reduced the ability of mAb 4A12 to detect RANTES passively bound on cell surfaces and abrogated the ability of RANTES to elicit an intracellular Ca2+ signal. Taken together, these studies demonstrate that the COOH-terminal alpha-helical region of RANTES plays a key role in GAG-binding, antiviral activity, and intracellular Ca2+ signaling and support a model in which GAGs play a key role in the biological activities of this chemokine.  相似文献   
687.
PURPOSE: Neovascularization of the cornea occurs in numerous pathologic states causing decreased visual acuity and blindness and is a major complication of corneal allotransplantation. The purpose of this study was to investigate the effect of topical and systemic cyclosporin A (CsA) on corneal angiogenesis induced by xenotransplantation or by chemical cauterization. The subcutaneous disc angiogenesis system (DAS) also was used to study the effects of CsA on angiogenesis in a nonocular site. METHODS: Corneal angiogenesis was provoked by either xenotransplantation or chemical cautery. Rats from experiments using both of these models were subdivided into four treatment groups. Topical treatment was administered by using 4% CsA eye drops or vehicle (castor oil) four times daily for 10 days. Systemic therapy consisted of daily (5 mg/kg per day) subcutaneous injections of CsA or vehicle. In the DAS experiments, rats received CsA or vehicle systemically or intradisc. The amount of neovascularization was quantitated by digital image analysis in corneal flat preparations and sections of discs. RESULTS: Rats that received xenografts or cautery manifested less corneal neovascularization than did control animals after topical of subcutaneous CsA treatment. CsA also enhanced the survival of corneal xenografts. A difference between CsA and vehicle-treated animals in the DAS experiments was not detected. CONCLUSIONS: CsA effectively retards the growth of new vessels in the cornea after xenotransplantation or chemical cauterization and prolongs xenograft survival. However, CsA does not suppress angiogenesis in all systems, because it was ineffective in blocking vessel growth in the subcutaneous DAS.  相似文献   
688.
Novel compounds, composed of two acridone moieties connected by a propyl or butyl spacer, were synthesized and tested as potential modulators of P-glycoprotein (P-gp)-mediated multidrug resistance. The propyl derivative 1,3-bis(9-oxoacridin-10-yl)-propane (PBA) was extremely potent and, at a concentration of 1 microM, increased steady state accumulation of vinblastine (VLB) approximately 9-fold in the multidrug-resistant cell line KB8-5. In contrast to the readily reversible effects of VRP and cyclosporin A on VLB uptake and similar to the effects of the cyclosporin analog PSC 833, this modulation by PBA was not fully reversed 6-8 hr after transfer of cells to PBA-free medium. Continuous exposure to 3 microM PBA was nontoxic and could completely reverse VLB resistance in KB8-5 cells. Consistent with its effects on VLB transport, the drug resistance-modulating effect of PSC 833 was significantly more persistent than that of VRP. However, the effect of PBA was, like that of VRP, rapidly reversed once the modulator was removed from the extracellular environment. PBA was able to compete with radiolabeled azidopine for binding to P-gp and to stimulate P-gp ATPase activity. However, both the steady state accumulation of PBA and the rate of efflux of PBA were similar in drug-sensitive KB3-1 and drug-resistant KB8-5 cells, suggesting that this compound is not efficiently transported by P-gp. These results indicate that PBA represents a new class of potent and poorly reversible synthetic modulators of P-gp-mediated VLB transport.  相似文献   
689.
The McCollough effect, an orientation-contingent color aftereffect, has been known for over 30 years and, like other aftereffects, has been taken as a means of probing the brain's operations psychophysically. In this paper, we review psychophysical, neuropsychological, and neuroimaging studies of the McCollough effect. Much of the evidence suggests that the McCollough effect depends on neural mechanisms that are located early in the cortical visual pathways, probably in V1. We also review evidence showing that the aftereffect can be induced without conscious perception of the induction patterns. Based on these two lines of evidence, it is argued that our conscious visual experience of the world arises in the cortical visual system beyond V1.  相似文献   
690.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号