首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   19篇
  国内免费   1篇
化学工业   30篇
金属工艺   3篇
机械仪表   9篇
建筑科学   2篇
能源动力   14篇
轻工业   6篇
水利工程   6篇
石油天然气   7篇
无线电   13篇
一般工业技术   48篇
冶金工业   4篇
原子能技术   5篇
自动化技术   29篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   7篇
  2019年   7篇
  2018年   17篇
  2017年   9篇
  2016年   15篇
  2015年   5篇
  2014年   5篇
  2013年   34篇
  2012年   25篇
  2011年   11篇
  2010年   6篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  1998年   1篇
  1994年   1篇
  1990年   2篇
  1989年   1篇
  1984年   1篇
  1983年   3篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
21.
Lotsizing in capacitated pure flow shop with sequence-dependent setups has been considered in this paper. An exact formulation of the problem is provided as a mixed-integer program. It is well known that the capacitated lotsizing and scheduling problem (CLSP) is NP-hard. The introduction of serially arranged machines and sequence-dependent setups makes the problem even more complicated. Five MIP-based heuristics based on iterative procedures are provided. The first three heuristics are based on the original model but to solve non-small instances of problem, the last two heuristics are based on permutation flow shop problem which ignores the majority of combinations. To test the accuracy of heuristics, two lower bounds are developed and compared against the optimal solution. The trade-offs between solution quality and computational times of heuristics are also provided.  相似文献   
22.
In this article, we investigate the buckling analysis of plates that are made of functionally graded materials (FGMs) resting on two-parameter Pasternak's foundations under thermal loads. Three different thermal loads were considered, i.e., uniform temperature rise (UTR), linear and non-linear temperature distributions (LTD and NTD) through the thickness. The mechanical and thermal properties of functionally graded material (FGM) vary continuously along the plate thickness according to a simple power law distribution. Employing an analytical approach, the five coupled governing stability equations, which are derived based on first-order shear deformation plate theory, are converted into two uncoupled partial differential equations (PDEs). Considering the Levy-type solution, these two PDEs are reduced to two ordinary differential equations (ODEs) with variable coefficients. Then, the ODEs are solved using an exact analytical solution, which is called the power series Frobenius method. The appropriate convergence study and comparison with previously published related articles was employed to verify the accuracy of the proposed method. After such verifications, the effects of parameters such as the plate aspect ratio, side-to-thickness ratio, gradient index, and elastic foundation stiffnesses on the critical buckling temperature difference are illustrated and explained. The critical buckling temperatures of functionally graded rectangular plates with six various boundary conditions are reported for the first time and can serve as benchmark results for researchers to validate their numerical and analytical methods in the future.  相似文献   
23.
Polycrystalline tungsten specimens were irradiated in the Iranian Inertial Electrostatic Confinement Fusion device (IR-IECF) by high energy (~100 keV) and high fluency (~1019 ions/cm2) helium and deuterium plasma to investigate the implantation impact of high energetic ions on tungsten as a candidate for fusion first wall material. Comparison of the exposure by He and D2 plasma and influence of high temperature (~1,100 °C) implantation of each ion has been examined. Scanning electron microscopy was used to investigate surface morphology changes for various ion fluencies. Results showed the onset of visible surface pores formation especially for helium implanted samples which increased with higher implant fluencies, eventually resulting in a rough and flaky surface structure, unlike deuterium implanted samples on which smoothening of the surface occurred. Microhardness measurements were used to evaluate mechanical properties of implanted tungsten. Each specimen sustained surface hardening after implantation which was observed to increase with greater ion dose. The phase formation and structural evolution were studied by X-ray diffractometry method.  相似文献   
24.
ZnO nanosheets and nanoflakes were grown on alumina particles in the absence of surfactants via heterogeneous precipitation using urea, zinc acetate and bayerite as precursors. Thermo-gravimetric analysis (TGA), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used and the results indicated the formation of only two phases: wurtzite-type ZnO and γ-Al2O3. ZnO nanoflakes were grown on alumina particles in the samples with ZnO content of 40 and 60 wt%, By increasing the ZnO content to 80 wt%, a porous hierarchical structure of ZnO with nanosheet arrays appeared. Both of these nanoflakes and nanosheets were about 40-80 nm in thickness and about 1-2 μm in diameter. It was proposed that Zns(CO3)2(OH)6 nuclei undergo higher growth rates in thin sheets at edges of bayerite particles with a higher surface energy. The Brunauer-Emmett-Teller (BET) measurements proved a reachable high surface area for hierarchical structures of ZnO nanosheets, which could mainly be attributed to their unique growth on alumina particles. Also, UV absorption results revealed that ZnO--Al2O3 compositions still show the UV characteristic absorption of ZnO, which can evidence the presence of photocatalytic properties in ZnO-Al2O3 compositions.  相似文献   
25.
Mixed-model assembly lines are widely used in manufacturing. This can be attributed to increased product variety and potential just-in-time (JIT) benefits obtained by applying mixed-model assembly lines. Because of market demand volatility, the flexibility of such a line is increasingly becoming more important and, consequently, determining an accurate sequence is becoming more complex. In this paper, first, we use the real options approach to evaluate one specific type of flexibility, i.e., product-mix flexibility. This methodology is applied to determine the products’ quantity that must be satisfied by the mixed-model assembly line. Then, in order to determine a desired sequence, we consider three objectives simultaneously: (1) total utility work cost, (2) total production rate variation cost, and (3) total set-up cost. A nonlinear zero–one model is developed for the problem whose objective function is a weighted sum of the above-mentioned objectives. Moreover, two efficient metaheuristics, i.e., a genetic algorithm (GA) and a memetic algorithm (MA), are proposed. These solution methods are compared with the optimal solution method using Lingo 6 software over a set of randomly generated test problems. The computational results reveal that the proposed memetic algorithm performs better than the proposed genetic algorithm.  相似文献   
26.
Brittle fracture in rounded-tip V-shaped notches   总被引:1,自引:0,他引:1  
Two failure criteria are proposed in this paper for brittle fracture in rounded-tip V-shaped notches under pure mode I loading. One of these criteria is developed based on the mean stress criterion and the other based on the point stress criterion which both are well known failure criteria for investigating brittle fracture in elements containing a sharp crack or a sharp V-notch. To verify the validity of the proposed criteria, first the experimental data reported by other authors from three-point bend (TPB) and four-point bend (FPB) tests on PMMA at −60 °C and Alumina–7% Zirconia ceramic are used. Additionally, some new fracture tests are also carried out on the rounded-tip V-notched semi-circular bend (RV-SCB) specimens made of PMMA for various notch opening angles and different notch tip radii. A very good agreement is shown to exist between the results of the mean stress criterion and the experimental data.  相似文献   
27.
A failure criterion is proposed for brittle fracture in U-notched components under mixed-mode static loading. The criterion, called UMTS, is developed based on the maximum tangential stress criterion and also a criterion proposed in the past for mode I failure of rounded V-shaped notches [Gomez FJ, Elices M. A fracture criterion for blunted V-notched samples. Int J Fracture 2004;127:239-64]. Using the UMTS criterion, a set of fracture curves are derived in terms of the notch stress intensity factors. These curves can be used to predict the mixed mode fracture toughness and the crack initiation angle at the notch tip. An expression is also obtained from this criterion for predicting fracture toughness of U-notched components in pure mode II loading. It is shown that there is a good agreement between the results of UMTS criterion and the experimental data obtained by other authors from three-point bend specimens.  相似文献   
28.
ABSTRACT

A novel one-pass integrated severe plastic deformation method, entitled extrusion compression angular pressing forward extrusion (ECAP-FE), was designed and used for fabricating a fine-grained as-cast AZ31 Mg alloy. Subsequently, mechanical (room temperature compression, tensile and microhardness) and microstructural properties of the processed sample were investigated in detail. In addition, a finite element simulation of the proposed method was carried out for evaluating the equivalent plastic strain and strain rate distribution. The results showed that the ECAP-FE method is a powerful method for processing the ultrafine-grained as-cast AZ31 Mg alloy in a single pass to achieve a uniform and fine microstructure with enhanced mechanical properties. Therefore, it appears that the proposed method has a great potential to a wide range of industrial applications.  相似文献   
29.
Nanostructured C/SiC/ZrB2–SiC oxidation protective gradient coating was prepared by a two‐step reactive melt infiltration method. In order to reduce production cost, ZrB2 phase was synthesized by the in situ reactive that included low‐cost ZrO2 and B2O3 powders as raw materials. High‐temperature oxidation behavior of coatings was evaluated by isothermal oxidation test at 1773 K in air for 10 hours. Thermodynamical behavior of the coatings at various temperatures during oxidation test and coating process was predicted by HSC Chemistry 6.0 software. Compressive residual stresses of 36.9 MPa and 41 MPa were calculated for in situ and ex situ coatings by Williamson‐Hall method. After 10 hours of isothermal oxidation at 1773K, in situ and ex situ coatings showed 12.84% and 15.69% of weight losses with oxidation rates of 1.87 × 10?2 g cm?3 h?1 and 0.91 × 10?2 g cm?3 h?1, respectively. These results indicated that the oxidation protection ability of the coating produced by the in situ method was very close to ex situ coating.  相似文献   
30.

In this paper, two element multiple input–multiple output (MIMO) meander line antenna systems with improved isolation performance and compact size are proposed and fabricated in WLAN frequency band. To increase isolation among antenna elements, a novel metamaterial spiral S-shaped resonator is embedded between two radiating elements. The proposed resonator has planar configuration and miniaturized size and is capable of blocking electromagnetic propagation between antenna elements by exhibiting negative effective permeability in the desired frequency band. To illustrate and evaluate the design process, two design samples are fabricated and tested in WLAN frequency band and the agreement among measurement and simulation results approves the design method. In the frequency range of 2.38–2.48 GHz, some MIMO communication system requirements like total active reflection coefficient, envelope correlation coefficient and capacity loss are tested on design samples which show satisfactory results, so this method can be employed in designing array antennas for small mobile communication systems. The designed MIMO antenna systems separated by 13.8 mm (less than λ/9), has better than ??40 dB isolation coefficient and near zero correlation coefficient and capacity loss at the operating frequency (2.4 GHz).

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号