首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   20篇
电工技术   11篇
综合类   1篇
化学工业   72篇
金属工艺   5篇
机械仪表   3篇
建筑科学   3篇
能源动力   7篇
轻工业   17篇
无线电   20篇
一般工业技术   44篇
冶金工业   8篇
原子能技术   4篇
自动化技术   21篇
  2023年   1篇
  2022年   1篇
  2021年   8篇
  2020年   8篇
  2019年   6篇
  2018年   6篇
  2017年   4篇
  2016年   10篇
  2015年   2篇
  2014年   7篇
  2013年   19篇
  2012年   8篇
  2011年   11篇
  2010年   12篇
  2009年   21篇
  2008年   9篇
  2007年   4篇
  2006年   7篇
  2005年   10篇
  2004年   6篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有216条查询结果,搜索用时 0 毫秒
91.
A sol–gel method was applied for the preparation of silica membranes with different average pore sizes. Ammonia (NH3) permeation/separation characteristics of the silica membranes were examined in a wide temperature range (50–400°C) by measurement of both single and binary component separation. The order of gas permeance through the silica membranes, which was independent of membrane average pore size, was as follows: He > H2 > NH3 > N2. These results suggest that, for permeation through silica membranes, the molecular size of NH3 is larger than that of H2, despite previous reports that the kinetic diameter of NH3 is smaller than that of H2. At high temperatures, there was no effect of NH3 adsorption on H2 permeation characteristics, and silica membranes were highly stable in NH3 at 400°C (i.e., gas permeance remained unchanged). On the other hand, at 50°C NH3 molecules adsorbed on the silica improved NH3‐permselectivity by blocking permeation of H2 molecules without decreasing NH3 permeance. The maximal NH3/H2 permeance ratio obtained during binary component separation was ~30 with an NH3 permeance of ~10?7 mol m?2 s?1 Pa?1 at an H2 permeation activation energy of ~6 kJ mol?1. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   
92.
Organosilica membranes were fabricated using bridged organoalkoxysilanes (bis(triethoxysilyl)methane (BTESM), bis(triethoxysilyl)ethane (BTESE), bis(triethoxysilyl)propane (BTESP), bis(trimethoxysilyl)hexane (BTMSH), bis(triethoxysilyl)benzene (BTESB), and bis(triethoxysilyl)octane (BTESO)) to produce highly permeable molecular sieving membranes. The effect of the organoalkoxysilanes on network pore size and microporous structure was evaluated by examining the molecular size and temperature dependence of gas permeance across a wide range of temperatures. Organosilica membranes showed H2/N2 and H2/CH4 permeance ratios that ranged from 10 to 150, corresponding to network pore size, and both H2 selectivity decreased with an increase in the carbon number between 2 Si atoms. Organosilica membranes showed activated diffusion for He and H2, and a slope of temperature dependence that increased approximate to the increase in the carbon number between 2 Si atoms. The relationship between activation energy and He/H2 permeance ratio for SiO2 and organosilica membranes suggested that the molecular sieving can dominate He and H2 permeation properties via the rigid microporous structure, which was constructed by BTESM and BTESE. With increased in the carbon concentration in silica, polymer chain vibration in organic bridges, which is a kind of solution/diffusion mechanism, can dominate the permeation properties. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4491–4498, 2017  相似文献   
93.
An ionic liquid electrolyte containing bis(fluorosulfonyl)imide (FSI) anion without any solvent is applied to a silicon-nickel-carbon (Si-Ni-carbon) composite anode for rechargeable lithium (Li)-ion batteries. The FSI-based ionic liquid electrolyte successfully provides a stable, reversible capacity for the Si-Ni-carbon anode, which is comparable to the performance observed in a typical commercialized solvent-based electrolyte, while a common ionic liquid electrolyte containing bis(trifluoromethanesulfonyl)imide (TFSI) anion without FSI presents no reversible capacity to the anode at all. Ac impedance analysis reveals that the FSI-based electrolyte provides very low interfacial and charge-transfer resistances at the Si-based composite anode, even when compared to the corresponding resistances observed in a typical solvent-based electrolyte. Galvanostatic cycling of the Si-based composite anode in the FSI-based electrolyte with a charge limitation of 800 mAh g−1 is stable and provides a discharge capacity of 790 mAh g−1 at the 50th cycle, corresponding to a cycle efficiency of 98.8%.  相似文献   
94.
Uncertainties in local solar radiation, ambient temperature and thermal load data have been one of the major factors limiting the reliability and efficiency of solar thermal hybrid systems. In the present paper, moving average auto regressive exogenous (ARX) model based reasoning has been mooted and modified to include moving average method, as an effective tool for predictions of these data. The results show that the method is quite robust and is capable of predicting fairly accurate results, which would make these systems more viable in areas where meteorological data are not available or vague.  相似文献   
95.
A modified gas‐translation (GT) model based on a GT mechanism was successfully applied to the pore‐size evaluation and gas transport behavior analysis of microporous membranes with different pore‐size distributions. Based on the gas permeation results of three microporous membranes derived from different alkoxides, the effects of activation energy and the selection of a standard gas on the pore‐size evaluation were discussed in a comparative study. The presence of nano‐sized defects had an important influence on the gas permeation performance of microporous membranes, depending largely on the original pore size of the membrane in question. Moreover, the gas‐separation effect of the pore‐size distribution in a silica membrane was theoretically studied and revealed a significant increase in gas permeance for relatively large gas species but not for small ones. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2268–2279, 2015  相似文献   
96.
The decomposition of sulfur trioxide to produce sulfur dioxide and oxygen using a catalytic membrane reactor is technology that promises to improve the economic viability of the thermochemical water-splitting Iodine-Sulfur (IS) process for large-scale CO2-free hydrogen production. The chemical stability of membrane materials under SO3, however, is a significant challenge for this strategy. In this study, microporous membranes with a layered structure that consisted of a membrane support prepared from α-Al2O3, an intermediate layer prepared from silica-zirconia, and a top layer prepared from bis (triethoxysilyl)ethane-derived organosilica sols, were examined for stability under SO3 and for use in SO3/O2 separation. An α-Al2O3 support that features SiO2–ZrO2 intermediate layers with large pore sizes and a high Si/Zr molar ratio showed excellent resistance to SO3, which was confirmed by N2 adsorption, Energy Dispersive X-ray Spectroscopy (EDS), and Scanning Electron Microscopy (SEM). These membranes also demonstrated a negligible change in gas permeance before and after SO3 exposure. Subsequently, in binary-component gas separation at 550°C, microporous organosilica-derived membranes achieved an O2/SO3 selectivity of 10 (much higher than the Knudsen selectivity of 1.6) while maintaining a high O2 permeance of 2.5 × 10−8 mol m–2 s–1 Pa–1.  相似文献   
97.
Permeance and permeance ratio in binary separation generally are obtained from experimental data using an analytical permeance equation consisting of the logarithmic average of the partial pressure difference (hereafter, approximate permeance equation). The aim of the present study was to clarify the applicable range for this equation. First, the separation performance of a membrane module was calculated with various given membrane properties (permeance, permeance ratio) and operation conditions (pressure, flow rate) via numerical computation. The obtained concentrations and flow rates in the retentate and permeate were used to calculate permeances via approximate permeance equation, and the validity was discussed by comparing permeances used for numerical computation with obtained ones. The present work clarifies the validity of the approximate permeance equation, and yields a general guideline stipulating that the partial pressure difference across the membrane at the inlet and outlet should maintain more than 60% to obtain the correct permeance.  相似文献   
98.
Exceptionally stable, mechanically robust, and highly methanol-selective organosilica membranes, including Bis(triethoxysiyl)acetylene (BTESA), fluorine-doped bis(triethoxysiyl) methane (F-BTESM), and Cetyltrimethylammonium chloride-etched bis(trimethoxysiyl)hexane (CTAC-BTMSH), were prepared and utilized for organic solvent reverse osmosis (OSRO) separations. The BTESA membrane showed optimal separation performance regarding methanol/toluene and possessed the highest levels of both permeation flux and rejection. Continuous measurements were performed to highlight the molecule size/shape discrimination of BTESA membranes using compounds such as methanol/methyl acetate, methanol/dimethyl carbonate (DMC) and methanol/methyl tert-butyl ether (MTBE). Also, a generalized solution-diffusion model was successful in predicting the permeation behaviors through organosilica membranes when used in an OSRO modality, and proved to be capable of accurate predictions on pressure-dependent permeation flux and rejection for a wide range of feed concentrations (0–55 wt%) and pressures (2–14 MPa). This study lends important insight for the development of organosilica membranes and process design for the energy-efficient OSRO separation of organic liquids.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号