首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学工业   6篇
无线电   1篇
一般工业技术   12篇
  2024年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2005年   4篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1990年   1篇
排序方式: 共有19条查询结果,搜索用时 0 毫秒
11.
A model accounting for linear viscoelasticity and microdamage evolution in short fibre composites is described. An incremental 2D formulation suitable for FE‐simulation is derived and implemented in FE‐solver ABAQUS. The implemented subroutine allows for simulation close to the final failure of the material. The formulation and subroutine is validated with analytical results and experimental data in a tensile test with constant strain rate using sheet moulding compound composites. FE‐simulation of a four‐point bending test is performed using shell elements. The result is compared with linear elastic solution and test data using a plot of maximum surface strain in compression and tension versus applied force. The model accounts for damage evolution due to tensile loading and neglects any damage evolution in compression, where the material has higher strength. Simulation and test results are in very good agreement regarding the slope of the load–strain curve and the slope change. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
12.
This article presents an overview of a prototype for management of a large‐scale distributed system. The prototype objective is to demonstrate a capability for intelligent management of distributed services, which correlates network and service elements faults to diagnose events. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
13.
One of the main drawbacks of wood fiber‐based composite materials is their propensity to swell due to moisture uptake. Because the wood fibers are usually the main contributor to hygroexpansion, it is of interest to quantify the hygroexpansion coefficient of wood fibers, to compare and rank different types of fibers. This investigation outlines an inverse method to estimate the transverse hygroexpansion coefficient of wood fibers based on measurements of moisture induced thickness swelling of composite plates. The model is based on composite micromechanics and laminate theory. Thickness swelling has been measured on polylactide matrix composites with either bleached reference fibers or crosslinked fibers. The crosslinking modification reduced the transverse hygroexpansion of the composites and the transverse coefficient of hygroexpansion of the fibers was reduced from 0.28 strain per relative humidity for reference fibers to 0.12 for cross‐linked fibers. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   
14.
The effect of wood fiber ultrastructure and cell wall hygroelastic properties on wood fiber composite hygroexpansion has been analyzed. An analytical concentric cylinder model extended to include also free hygroexpansion of orthotropic phase materials has been used on several length scales. Using properties of the three main wood polymers, cellulose, hemicellulose and lignin the longitudinal and transverse hygroexpansion coefficients for the microfibril unit cell were obtained and the volume fraction change of the wood polymers in the microfibril unit cell depending on relative humidity was calculated. The fiber cell wall was modeled regarding each individual S1, S2 and S3 layer and the cell wall longitudinal hygroexpansion coefficient was determined depending on microfibril angle in the S2 layer. A homogenization procedure replacing the S1, S2 and S3 layers with one single layer was found not to influence the results significantly for low microfibril angles. Finally the hygroexpansion coefficients of an aligned softwood fiber composite were calculated.  相似文献   
15.
The effect of temperature and moisture on mechanical behavior of flax fiber/starch based composites was investigated experimentally. Elastic modulus, the nonlinear tensile loading curves, and failure strain were analyzed. Neat matrix and composites with 20 and 40% weight content of fibers were tested. It was found, performing tests with different amplitudes, that microdamage development with stress is rather limited and the related elastic modulus reduction in this type of composites is not significant. It was shown that the composite elastic modulus and failure stress are linearly related to the maximum tensile stress in resin. The sensitivity of the maximum stress of the resin with respect to temperature and moisture is the source of composites sensitivity to these parameters. Constant interface stress shear lag model for stress transfer assuming matrix yielding at the fiber/matrix interface has been successfully used to explain the tensile test data. It indicates that the sensitivity of the used composite with respect to the matrix properties change could be significantly reduced by increasing the average fiber length from 0.9 mm to 1.5 mm. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   
16.
Most existing models for the problem of fibre/matrix stress-transfer through a partially debonded interface roughly solve the stress distribution in the debonded zone, neglecting the presence of the perfectly bonded zone. However the stress interactions between two zones is what makes the problem essentially different from the stress-transfer problem for a perfectly bonded interface. This paper suggests a variational approach based on the principle of minimum complementary energy not only in a perfectly bonded zone but also in a zone with a discontinuous interface. The debonded interface is treated as an external boundary on which a presumed interfacial shear stress is specified. A new analytical model, including stress non-uniformity in the radial direction and crack interaction, is derived to describe the stress state around fibre breaks and debonding tips in a single fibre embedded in an infinite matrix. For the presumed shear stress at the debonded interface the minimisation procedure renders the most accurate closed-form solution (under used assumptions) for both interactive zones. Finally, the ‘best’ shear stress distribution at the debonded interface is found by using Coulomb’s friction law and simple numerical iterations. The stress profiles along both axial and radial directions are presented and compared with results from a numerical model[1] available in the literature and also from finite-element analysis. Good agreements are achieved. Extensive applications of this approach and the derived model are also discussed.  相似文献   
17.
18.
19.
In this work, we investigate the relationship between the rubbery modulus and the degree of cure for partially to fully cured LY5052 epoxy resin. In particular, this paper experimentally tests an existing model formulated for shear modulus by redefining for in the tensile storage modulus. Experiments to characterize viscoelastic behaviour were performed in a dynamic mechanical and thermal analysis (DMTA) instrument in the frequency domain. Master curves are then created from DMTA using general time–temperature–cure superposition. The master curves are then normalized using the model so that the master curve does not depend on the properties in the rubbery region. This results in a unique master curve that describes the viscoelastic behaviour of the LY5052 epoxy resin for the given conditions. Once the relationship between the rubbery modulus and the degree of cure has been established, the amount of experimental characterization can be reduced. This could lead to the development of simplified experimental methodologies and simplified models to characterize the viscoelasticity of low molecular weight resins like the LY5052 epoxy resin system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号