首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   26篇
电工技术   2篇
化学工业   59篇
金属工艺   5篇
机械仪表   13篇
建筑科学   11篇
能源动力   16篇
轻工业   8篇
水利工程   1篇
石油天然气   1篇
无线电   38篇
一般工业技术   78篇
冶金工业   4篇
原子能技术   2篇
自动化技术   48篇
  2023年   4篇
  2022年   4篇
  2021年   10篇
  2020年   11篇
  2019年   16篇
  2018年   16篇
  2017年   11篇
  2016年   16篇
  2015年   12篇
  2014年   16篇
  2013年   16篇
  2012年   21篇
  2011年   28篇
  2010年   12篇
  2009年   24篇
  2008年   26篇
  2007年   17篇
  2006年   8篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  1999年   2篇
  1996年   1篇
  1976年   1篇
排序方式: 共有286条查询结果,搜索用时 15 毫秒
101.
This study aims at forecasting the most possible curve for domestic fossil fuel production of Turkey to help policy makers to develop policy implications for rapidly growing dependency problem on imported fossil fuels. The fossil fuel dependency problem is international in scope and context and Turkey is a typical example for emerging energy markets of the developing world. We developed a decision support system for forecasting fossil fuel production by applying a regression, ARIMA and SARIMA method to the historical data from 1950 to 2003 in a comparative manner. The method integrates each model by using some decision parameters related to goodness-of-fit and confidence interval, behavior of the curve, and reserves. Different forecasting models are proposed for different fossil fuel types. The best result is obtained for oil since the reserve classifications used it is much better defined them for the others. Our findings show that the fossil fuel production peak has already been reached; indicating the total fossil fuel production of the country will diminish and theoretically will end in 2038. However, production is expected to end in 2019 for hard coal, in 2024 for natural gas, in 2029 for oil and 2031 for asphaltite. The gap between the fossil fuel consumption and production is growing enormously and it reaches in 2030 to approximately twice of what it is in 2000.  相似文献   
102.
In this article, simple analytic CAD‐oriented expressions are presented in order to calculate the quasistatic TEM parameters of elliptical, cylindrical, and asymmetric shielded striplines for the multilayer case by using conformal‐mapping techniques (CMTs). It is demonstrated that the derived expressions are accurate and very simple to use in related applications. Firstly, analytical verifications are made and then the results of this article and those available in the known general literature are compared. © 2005 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2006.  相似文献   
103.
In the current study, an unalloyed ductile iron containing 3.50 C wt.%, 2.63 Si wt.%, 0.318 Mn wt.%, and 0.047 Mg wt.% was intercritically austenitized (partially austenitized) in two-phase regions (α + γ) at different temperatures for 20 min and then was quenched into salt bath held at austempering temperature of 365 °C for various times to obtain different ausferrite plus proeutectoid ferrite volume fractions. Fine and coarse dual matrix structures (DMS) were obtained from two different starting conditions. Some specimens were also conventionally austempered from 900 °C for comparison. The results showed that a structure having proeutectoid ferrite plus ausferrite (bainitic ferrite + high-carbon austenite (retained or stabilized austenite)) has been developed. Both of the specimens with ∼75% ausferrite volume fraction (coarse structure) and the specimen with ∼82% ausferrite volume fraction (fine structure) exhibited the best combination of high strength and ductility compared to the pearlitic grades, but their ductility is slightly lower than the ferritic grades. These materials also satisfy the requirements for the strength of the quenched and tempered grades and their ductility is superior to this grade. The correlation between the strain-hardening rates of the various austempered ductile iron (ADI) with DMS and conventionally heat-treated ADI microstructures as a function of strain was conducted by inspection of the respective tensile curves. For this purpose, the Crussard-Jaoul (C-J) analysis was employed. The test results also indicate that strain-hardening behavior of ADI with dual matrix is influenced by the variations in the volume fractions of the phases, and their morphologies, the degree of ausferrite connectivity and the interaction intensities between the carbon atoms and the dislocations in the matrix. The ADI with DMS generally exhibited low strain-hardening rates compared to the conventionally ADI.  相似文献   
104.
Occupants have a significant impact upon building energy use, e.g. through the actuation of window blinds and switching off lights. Automation systems with fixed set points for controlling blinds and lights have been used in some applications as an attempt to mitigate the impact of occupant behaviour upon energy consumption. A conceptual framework of an alternative control method is presented, one in which the control system adapts control set points in real time to each occupant's preferences. The potential of this hypothesis is demonstrated through a simulation-based study focused on a hypothetical south-facing office with existing empirical models that predict occupant behaviour regarding the control of window blinds and lights. The performance of a proposed adaptive automation system is simulated, one in which window-blind and lighting control set points are adapted in real time to learn the modelled occupant preferences using a Kalman filter. The performance of this alternative occupant-learning method of control is contrasted to that of two conventional control methods, one in which occupants have manual control over window blinds and lights, and the other that employs an automation system with fixed set points. The simulation results indicate that such an adaptive occupant-learning control method could lead to substantial energy savings.  相似文献   
105.
106.
107.
108.
In this work, dual‐modal (fluorescence and magnetic resonance) imaging capabilities of water‐soluble, low‐toxicity, monodisperse Mn‐doped ZnSe nanocrystals (NCs) with a size (6.5 nm) below the optimum kidney cutoff limit (10 nm) are reported. Synthesizing Mn‐doped ZnSe NCs with varying Mn2+ concentrations, a systematic investigation of the optical properties of these NCs by using photoluminescence (PL) and time resolved fluorescence are demonstrated. The elemental properties of these NCs using X‐ray photoelectron spectroscopy and inductive coupled plasma‐mass spectroscopy confirming Mn2+ doping is confined to the core of these NCs are also presented. It is observed that with increasing Mn2+ concentration the PL intensity first increases, reaching a maximum at Mn2+ concentration of 3.2 at% (achieving a PL quantum yield (QY) of 37%), after which it starts to decrease. Here, this high‐efficiency sample is demonstrated for applications in dual‐modal imaging. These NCs are further made water‐soluble by ligand exchange using 3‐mercaptopropionic acid, preserving their PL QY as high as 18%. At the same time, these NCs exhibit high relaxivity (≈2.95 mM?1 s?1) to obtain MR contrast at 25 °C, 3 T. Therefore, the Mn2+ doping in these water‐soluble Cd‐free NCs are sufficient to produce contrast for both fluorescence and magnetic resonance imaging techniques.  相似文献   
109.
A colloidal quantum dot light‐emitting diode (QLED) is reported with substantially enhanced light extraction efficiency by applying a layer of large‐scale, low‐cost, periodic nanopillar arrays. Zinc oxide nanopillars are grown on the glass surface of the substrate using a simple, efficient method of non‐wetting templates. With the layer of ZnO nanopillar array as an optical outcoupling medium, a record high current efficiency (CE) of 26.6 cd/A is achieved for QLEDs. Consequently, the corresponding external quantum efficiency (EQE) of 9.34% reaches the highest EQE value for green‐emitting QLEDs. Also, the underlying physical mechanisms enabling the enhanced light‐extraction are investigated, which leads to an excellent agreement of the numerical results based on the mode theory with the experimental measurements. This study is the first account for QLEDs offering detailed insight into the light extraction efficiency enhancement of QLED devices. The method demonstrated here is intended to be useful not only for opening up a ubiquitous strategy for designing high‐performance QLEDs but also with respect to fundamental research on the light extraction in QLEDs.  相似文献   
110.
Laser micromachining can replace mechanical removal methods in many industrial applications, particularly in the processing of difficult-to-machine materials such as hardened metals, ceramics, and composites. It is being applied across many industries like semiconductor, electronics, medical, automotive, aerospace, instrumentation and communications. Laser machining is a thermal process. The effectiveness of this process depends on thermal and optical properties of the material. Therefore, laser machining is suitable for materials that exhibit a high degree of brittleness, or hardness, and have favourable thermal properties, such as low thermal diffusivity and conductivity. Ceramics which have the mentioned properties are used extensively in the microelectronics industry for scribing and hole drilling.Rapid improvement of laser technology in recent years gave us facility to control laser parameters such as wavelength, pulse duration, energy and frequency of laser. In this study, Nd:YAG pulsed laser (with minimum pulse duration of 0.5 ms) is used in order to determine the effects of the peak power and the pulse duration on the holes of the alumina ceramic plates. The thicknesses of the alumina ceramic plates drilled by laser are 10 mm. Average hole diameters are measured between 500 μm and 1000 μm at different drilling parameters. The morphologies of the drilled materials are analyzed using optical microscope. Effects of the laser pulse duration and the peak power on the average taper angles of the holes are investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号