首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84112篇
  免费   958篇
  国内免费   408篇
电工技术   780篇
综合类   2317篇
化学工业   11501篇
金属工艺   4781篇
机械仪表   3021篇
建筑科学   2204篇
矿业工程   562篇
能源动力   1104篇
轻工业   3607篇
水利工程   1268篇
石油天然气   341篇
无线电   9252篇
一般工业技术   16349篇
冶金工业   2759篇
原子能技术   255篇
自动化技术   25377篇
  2022年   11篇
  2021年   16篇
  2019年   13篇
  2018年   14454篇
  2017年   13380篇
  2016年   9964篇
  2015年   611篇
  2014年   244篇
  2013年   202篇
  2012年   3144篇
  2011年   9426篇
  2010年   8290篇
  2009年   5549篇
  2008年   6790篇
  2007年   7786篇
  2006年   137篇
  2005年   1216篇
  2004年   1142篇
  2003年   1178篇
  2002年   537篇
  2001年   108篇
  2000年   180篇
  1999年   62篇
  1998年   84篇
  1997年   59篇
  1996年   64篇
  1995年   19篇
  1994年   25篇
  1993年   15篇
  1992年   18篇
  1991年   28篇
  1988年   14篇
  1987年   9篇
  1980年   9篇
  1969年   25篇
  1968年   44篇
  1967年   36篇
  1966年   42篇
  1965年   44篇
  1964年   11篇
  1963年   28篇
  1962年   22篇
  1961年   18篇
  1960年   30篇
  1959年   37篇
  1958年   40篇
  1957年   36篇
  1956年   35篇
  1955年   63篇
  1954年   69篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
891.
Zinc oxide nanoparticles (ZnO NPs),as a new type of pH-sensitive drug carrier,have received much attention.ZnO NPs are stable at physiological pH,but can dissolve quickly in the acidic tumor environment (pH < 6) to generate cytotoxic zinc ions and reactive oxygen species (ROS).However,the protein corona usually causes the non-specific degradation of ZnO NPs,which has limited their application considerably.Herein,a new type of pH-sensitive nanoreactor (ZnO-DOX@F-mSiO2-FA),aimed at reducing the non-specific degradation of ZnO NPs,is presented.In the acidic tumor environment (pH < 6),it can release cytotoxic zinc ions,ROS,and anticancer drugs to kill cancer cells effectively.In addition,the fluorescence emitted from fluorescein isothiocyanate (FITC)-labeled mesoporous silica (F-mSiO2) and doxorubicin (DOX) can be used to monitor the release behavior of the anticancer drug.This report provides a new method to avoid the non-specific degradation of ZnO NPs,resulting in synergetic therapy by taking advantage of ZnO NPs-induced oxidative stress and targeted drug release.  相似文献   
892.
Light management and electrical isolation are essential for the majority of optoelectronic nanowire (NW) devices.Here,we present a cost-effective technique,based on vapor-phase deposition of parylene-C and subsequent annealing,that provides conformal encapsulation,anti-reflective coating,improved optical properties,and electrical insulation for GaAs nanowires.The process presented allows facile encapsulation and insulation that is suitable for any nanowire structure.In particular,the parylene-C encapsulation functions as an efficient antireflection coating for the nanowires,with reflectivity down to <1% in the visible spectrum.Furthermore,the parylene-C coating increases photoluminescence intensity,suggesting improved light guiding to the NWs.Finally,based on this process,a NW LED was fabricated,which showed good diode performance and a clear electroluminescence signal.We believe the process can expand the fabrication possibilities and improve the performance of optoelectronic nanowire devices.  相似文献   
893.
Lead-free (K0.5Na0.5)(Nb1-xGe x )O3 (KNN-xGe, where x = 0-0.01) piezoelectric ceramics were prepared by conventional ceramic processing. The effects of Ge4+ cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nb5+ ions as acceptors, and the Curie temperature (TC) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN-xGe ceramics was 1020°C. Ge4+ doping less than 0.4 mol.%can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN-xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d33 = 120 pC/N, planar electromechanical coupling coefficient kp = 34.7%, mechanical quality factor Qm = 130, and tanδ = 3.6%.  相似文献   
894.
A novel Ag/AgCl/chitosan composite photocatalyst was successfully prepared by a simple one-step method. During this progress, environmentally benign chitosan not only served as reductant to reduce Ag+ to Ag0 species, but also acted as supporter for Ag/AgCl nanoparticles. XRD, SEM, EDX, UV-vis DRS and XPS were employed to characterize the as-prepared simples. SEM images of Ag/AgCl/chitosan composites revealed that Ag/AgCl nanoparticles were successfully loaded onto chitosan without obvious aggregation. All Ag/AgCl/chitosan composites exhibited efficient photocatalytic activity for the degradation of rhodamine B (RhB) under visible-light irradiation. The result of photocatalytic degradation experiment indicated that 20% of the mass ratio of AgCl to chitosan was the optimum, and after 40 min photocatalytic reaction, the degradation rate reached about 96%.  相似文献   
895.
Sodium-ion batteries have received remarkable attention as next-generation high-performance electrochemical energy storage devices because of their cost effectiveness and the broad geographical distribution of sodium. As a critical component of sodium-ion batteries, anode materials, especially nanostructured anodes, have a significant effect on the electrochemical performance of sodium-ion batteries. Recent research indicates that phosphorus and metal phosphides show great promise as anode candidates for sodium-ion batteries because of their low cost and relatively high theoretical gravimetric and volumetric specific capacities. In this review, we systematically summarize recent research progress on state-of-the-art nanostructured phosphorus and phosphides, including the synthetic strategies, Na-storage mechanisms, and the relationship between the nanostructure and electrochemical performance. Moreover, we present an overview of future challenges and opportunities based on current developments.
  相似文献   
896.
Despite great interests in electrochemical energy storage systems for numerous applications, considerable challenges remain to be overcome. Among the various approaches to improving the stability, safety, performance, and cost of these systems, molecular functionalization has recently been proved an attractive method that allows the tuning of material surface reactivity while retaining the properties of the bulk material. For this purpose, the reduction of aryldiazonium salt, which is a versatile method, is considered suitable; it forms robust covalent bonds with the material surface, however, with the formation of multilayer structures and sp3 defects (for carbon substrate) that can be detrimental to the electronic conductivity. Alternatively, non-covalent molecular functionalization based on ππ interactions using aromatic ring units has been proposed. In this review, the various advances in molecular functionalization concerning the current limitations in lithium-ion batteries and electrochemical capacitors are discussed. According to the targeted applications and required properties, both covalent and non-covalent functionalization methods have proved to be very efficient and versatile. Fundamental aspects to achieve a better understanding of the functionalization reactions as well as molecular layer properties and their effects on the electrochemical performance are also discussed. Finally, perspectives are proposed for future implementation of molecular functionalization in the field of electrochemical storage.
  相似文献   
897.
A facile one-step approach to synthesize various phase-separated porous, raspberry-like, flower-like, core–shell and anomalous nanoparticles and nanocapsules via 1,1-diphenylethene (DPE) controlled soap-free emulsion copolymerization of styrene (S) with glycidyl methacrylate (GMA), or acrylic acid (AA) is reported. By regulating the mass ratio of S/GMA, transparent polymer solution, porous and anomalous P(S-GMA) particles could be produced. The P(S-GMA) particles turn from flower-like to raspberry-like and then to anomalous structures with smooth surface as the increase of divinylbenzene (DVB) crosslinker. Transparent polymer solution, nanocapsules and core–shell P(S-AA) particles could be obtained by altering the mole ratio of S/AA; anomalous and raspberry-like P(S-AA) particles are produced by adding DVB. The unpolymerized S resulted from the low monomer conversion in the presence of DPE aggregates to form nano-sized droplets, and migrates towards the external surfaces of the GMA-enriched P(S-GMA) particles and the internal bulk of the AA-enriched P(S-AA) particles. The nano-sized droplets function as in situ porogen, porous P(S-GMA) particles and P(S-AA) nanocapsules are produced when the porogen is removed. This novel, facile, one-step method with excellent controllability and reproducibility will inspire new strategies for creating hierarchical phase-separated polymeric particles with various structures by simply altering the species and ratio of comonomers. The drug loading and release experiments on the porous particles and nanocapsules demonstrate that the release of doxorubicin hydrochloride is very slow in weakly basic environment and quick in weakly acidic environment, which enables the porous particles and nanocapsules with promising potential in drug delivery applications.
  相似文献   
898.
The acid-catalyzed ring-opening reaction of styrene oxide was used as a probe reaction for evaluating the acidic properties of carboxylated carbocatalysts. Significant discrepancies in the initial reaction rates were normalized using the total number of carboxyl groups, and demonstrated that the average catalytic activities of the carboxyl moieties on the carbocatalysts differed. Comparisons between the apparent activation energy E a and the pre-exponential factor A, derived from Arrhenius analysis, demonstrated that A varied more significantly, and therefore had a more significant effect on the reaction rates than E a. The variation in the calculated pKa values of the carboxyl groups was attributed to the electronic effects of the nitro groups. This hypothesis was supported by the temperature programmed desorption profiles of nitrogen monoxide ions.
  相似文献   
899.
The assembly of hybrid nanomaterials has opened up a new direction for the construction of high-performance anodes for lithium-ion batteries (LIBs). In this work, we present a straightforward, eco-friendly, one-step hydrothermal protocol for the synthesis of a new type of Fe2O3-SnO2/graphene hybrid, in which zero-dimensional (0D) SnO2 nanoparticles with an average diameter of 8 nm and one-dimensional (1D) Fe2O3 nanorods with a length of ~150 nm are homogeneously attached onto two-dimensional (2D) reduced graphene oxide nanosheets, generating a unique point-line-plane (0D-1D-2D) architecture. The achieved Fe2O3-SnO2/graphene exhibits a well-defined morphology, a uniform size, and good monodispersity. As anode materials for LIBs, the hybrids exhibit a remarkable reversible capacity of 1,530 mA·g?1 at a current density of 100 mA·g?1 after 200 cycles, as well as a high rate capability of 615 mAh·g?1 at 2,000 mA·g?1. Detailed characterizations reveal that the superior lithium-storage capacity and good cycle stability of the hybrids arise from their peculiar hybrid nanostructure and conductive graphene matrix, as well as the synergistic interaction among the components.
  相似文献   
900.
Carbon-coated SiC@C nanocapsules (NCs) with a hexagonal platelet-like morphology were fabricated by a simple direct current (DC) arc-discharge plasma method.The SiC@C NCs were monocrystalline,120-150 nm in size,and approximately 50 nm thick.The formation of the as-prepared SiC@C NCs included nucleation of truncated octahedral SiC seeds and subsequent anisotropic growth of the seeds into hexagonal nanoplatelets in a carbon-rich atmosphere.The disordered carbon layers on the SiC@C NCs were converted into SiO2 shells of SiC@SiO2 NCs by heat treatment at 650 ℃ in air,during which the shape and inherent characteristics of the crystalline SiC core were obtained.The interface evolution from carbon to SiO2 shells endowed the SiC@SiO2 NCs with enhanced photocatalytic activity due to the hydrophilic and transparent nature of the SiO2 shell,as well as to the photosensitive SiC nanocrystals.The band gap of the nanostructured SiC core was determined to be 2.70 eV.The SiC@SiO2 NCs degraded approximately 95% of methylene blue in 160 min under visible light irradiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号